ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-11
    Description: An investigation has been made in the Langley 9- by 12-inch super-sonic blowdown tunnel at Mach numbers of 1.62 and 1.96 of a partial-span body with one tail surface, designed for use on the Hughes Falcon (MX-904) missile. The present paper extends the work reported in NACA-RM-SL50E10. Force and moment data including elevator hinge moment were obtained for the conditions of the tail in the presence of a small segment of the fore-shortened body, in the presence of a semi-span body and attached to a semi-span body, and for the condition of the foreshortened semi-span body alone.
    Keywords: Aerodynamics
    Type: NACA-RM-SL50G13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: A method is presented for the estimation of the subsonic-flight-speed characteristics of sharp-lip inlets applicable to supersonic aircraft. The analysis, based on a simple momentum balance consideration, permits the computation of inlet pressure recovery - mass-flow relations and additive-drag coefficients for forward velocities from zero to the speed of sound. The penalties for operation of a sharp-lip inlet at velocity ratios other than 1.0 may be severe; at lower velocity ratios an additive drag is incurred that is not cancelled by lip suction, while at higher velocity ratios, unavoidable losses in inlet total pressure will result. In particular, at the take-off condition, the total pressure and the mass flow for a choked inlet are only 79 percent of the values ideally attainable with a rounded lip. Experimental data obtained at zero speed with a sharp-lip supersonic inlet model were in substantial agreement with the theoretical results.
    Keywords: Aerodynamics
    Type: NACA-TN-3004
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-27
    Description: An investigation of the isothermal wake-flow characteristics of several flame-holder shapes was carried out in a 4- by 4-inch flow chamber. The effects of flame-holder-shape changes on the characteristics of the Karman vortices and thus on the recirculation zones to which experimenters have related the combustion process were obtained for several flame holders. The results may furnish a basis of correlation, of combustion efficiency and stability for similarly shaped flame holders in combustion studies. Values of the spacing ratio-(ratio of lateral spacing to longitudinal spacing of vortices] obtained for the various shapes approximated the theoretical value of 0.36 given by the Karman stability analysis. Variations in vortex strength of more than 200 percent and in frequency of more than 60 percent were accomplished by varying flame-holder shape. A maximum increase in the recirculation parameter of 56 percent over that for a conventional V-gutter was also obtained. Varying flameholder shape and size enables the designer to select many schedules of variations in vortex strength and frequency- not obtainable by changing size only and may make it possible to approach theoretical maximum vortex strength for any given frequency.
    Keywords: Aerodynamics
    Type: NACA-RM-E51K07 , E-2403
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-27
    Description: Sound pressure levels, frequency spectrum, and jet velocity profiles are presented for an engine-afterburner combination at various values of afterburner fuel - air ratio. At the high fuel-air ratios, severe low-frequency resonance was encountered which represented more than half the total energy in the sound spectrum. At similar thrust conditions, lower sound pressure levels were obtained from a current fighter air craft with a different afterburner configuration. The lower sound pressure levels are attributed to resonance-free afterburner operation and thereby indicate the importance of acoustic considerations in afterburner design.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E54G07
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-10
    Description: An investigation was made of the performance of nine conical cooling-air ejectors at primary jet pressure ratios from 1 to 10, secondary pressure ratios to 4.0, and a temperature ratio of unity. This phase of the investigation was limited to conical ejectors having shroud exit to primary nozzle exit diameter ratios of 1.06 and 1.40, with several spacing ratios for each. The experimental results indicated that the pumping range and amount of cooling-air flow obtained with a 1.06 diameter ratio ejector were relatively small for cooling purposes but that the maximum possible thrust loss, which occurred with no secondary flow, was only 7 percent of convergent nozzle thrust. The 1.40 diameter ratio ejector produced a large cooling air flow and showed a possible thrust loss of 29.5 percent with no cooling air flow. Thrust gains were attained with ejectors of both diameter ratios at secondary pressure ratios greater than 1.0. The limiting primary pressure ratio below which an ejector can operate at a specific secondary pressure ratio (cut-off point) may be estimated for various flight conditions from data contained herein.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E52F26
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-11
    Description: Tests were made in the Langley 8-foot high-speed tunnel to investigate the aerodynamic characteristics of the D-558-1 airplane and various wing and tail configurations on the D-558-1 fuselage. The various wing and tail configurations were tested to determine the aerodynamic effects of aspect ratio and sweep for suitable use on the second phase of the D-558 project (D-558-2). The tests were conducted through a speed range from a Mach number of 0.40 to approximately 0.94.This part of the investigation includes the lift and drag results available for the configurations tested at this rate. The D-558-1 results indicated that the lift force break would occur at a Mach number of 0.85 with some reduction in lift at speeds above this Mach number. Tests indicated that the airplane will have satisfactory lift and drag characteristics up to and including its design Mach number of 0.85. The 35deg sweptback, 35deg swept-forward, and low-aspect-ratio (2.0) wing configurations all showed pronounced improvements in maintaining lift throughout the Mach number range tested and in increasing the critical speeds above the D-558-1 value &itical to critical Mach numbers on the order of 0.9. Insofar as lift and drag characteristics are concerned level flight at speeds approaching the velocity of sound appears practical if swept or low-aspect-ratio configurations similar to those tested are used.
    Keywords: Aerodynamics
    Type: NACA-RM-L6J09
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: Altitude performance of a YJ71-A-7 turbojet engine, with afterburner inoperative, was determined in the NACA Lewis altitude wind tunnel over a wide range of flight conditions. Engine speed and exhaust-nozzle area were controlled independently during this investigation. The variation of corrected values of air flow, net thrust, and fuel flow with corrected engine speed was not defined by a single curve with changes in altitude at given flight Mach number. Changes in altitude had very little effect on minimum specific fuel consumption at altitudes up to 45,000 feet. There is one exhaust-nozzle schedule that is nearly optimum for all flight conditions. Performance calculated from pumping characteristics agreed with experimental values and can therefore be used to extend engine performance data.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E53E13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...