ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aerodynamics  (4)
  • GENERAL  (2)
  • Biology
  • 1975-1979
  • 1955-1959  (6)
  • 1958  (6)
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2005-08-09
    Keywords: GENERAL
    Type: Notes on Space Technol.; 15 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2005-08-09
    Keywords: GENERAL
    Type: Notes on Space Technol.; 65 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-17
    Description: An investigation was made of the effects of body shape on the drag of a 45 deg sweptback-wing-body combination at Mach numbers from 0.90 to 1.43. Both the expansion and compression fields induced by body indentation were swept back as the stream Mach number increased from 0.94. The line of zero pressure change was generally tangent to the Mach lines associated with the local velocities over the wing and body. The strength of the induced pressure fields over the wing were attenuated with spanwise distance and the major effects were limited to the inboard 60 percent of the wing semispan. Asymmetrical body indentation tended to increase the lift on the forward portion of the wing and reduce the lift on the rearward portion. This redistribution of lift had a favorable effect on the wave drag due to lift. Symmetrical body indentation reduced the drag loading near the wing-body juncture at all Mach numbers. The reduction in drag loading increased in spanwise extent as the Mach number increased and the line of zero induced pressure became more nearly aligned with the line of maximum wing thickness. Calculations of the wave drag due to thickness, the wave drag due to lift, and the vortex drag of the basic and symmetrical M = 1.2 body and wing combinations at an angle of attack of 0 deg predicted the effects of indentation within 11 percent of the wing-basic-body drag throughout the Mach number range from 1.0 to 1.43. Calculations of the wave drag due to thickness, the wave drag due to lift, and the vortex drag for the basic, symmetrical M = 1.2, and asymmetrical M = 1.4 body and wing combinations predicted the total pressure drag to within 8 percent of the experimental value at M = 1.43.
    Keywords: Aerodynamics
    Type: NASA-MEMO-10-23-58L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-16
    Description: A series of flight tests were conducted to determine the lift and drag characteristics of an F4D-1 airplane over a Mach number range of 0.80 to 1.10 at an altitude of 40,000 feet. Apparently satisfactory agreement was obtained between the flight data and results from wind-tunnel tests of an 0.055-scale model of the airplane. Further tests show the apparent agreement was a consequence of the altitude at which the first tests were made.
    Keywords: Aerodynamics
    Type: NASA-MEMO-10-8-58A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-14
    Description: An investigation was performed in the Langley Unitary Plan wind tunnel to determine the aerodynamic characteristics of a model of a 45 deg swept-wing fighter airplane, and to determine the loads on attached stores and detached missiles in the presence of the model. Also included was a determination of aileron-spoiler effectiveness, aileron hinge moments, and the effects of wing modifications on model aerodynamic characteristics. Tests were performed at Mach numbers of 1.57, 1.87, 2.16, and 2.53. The Reynolds numbers for the tests, based on the mean aerodynamic chord of the wing, varied from about 0.9 x 10(exp 6) to 5 x 10(exp 6). The results are presented with minimum analysis.
    Keywords: Aerodynamics
    Type: NACA-RM-L58C17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-16
    Description: A research model of an airplane with a configuration suitable for supersonic flight was tested at transonic speeds in order to establish the effects on longitudinal and lateral stability of certain changes in both wing sweep and height of the horizontal tail. Two wings of aspect ratio 3 and taper ratio 0.15, one having the quarter-chord line swept back 30 deg and the other 45 deg, were each tested with the horizontal tail of the model in a low and in a high position. One configuration was also tested with fuselage strakes. The tests were made at Mach numbers from 0.60 to 1.17 and Reynolds numbers from 1.9 x 10(exp 6) to 2.6 x 10(exp 6). The results indicated that a low horizontal-tail position (below the wing-chord plane) gave positive longitudinal stability for the model for all angles of attack used (angles of attack up to 24 deg); whereas, a higher tail position (above the wing-chord plane) resulted in a large reduction in stability at moderate angles of attack. With the higher horizontal tail, the 30 deg-swept-wing model had somewhat more stability than the 45 deg-swept-wing model at subsonic Mach numbers. With the lower tail, the 45 deg-swept-wing model had slightly more stability at all Mach numbers. The model with the 30 deg swept wing had greater directional stability with the tail in the higher rather than the lower position, but the opposite was true for the 45 deg-swept-wing model. The directional stability decreased sharply at high angles of attack; this characteristic was alleviated by the use of fuselage strakes which, however, proved to be detrimental to the longitudinal stability of the model tested.
    Keywords: Aerodynamics
    Type: NASA-MEMO-10-3-58L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...