ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Calcified tissue international 51 (1992), S. 143-150 
    ISSN: 1432-0827
    Keywords: Adsorption ; Magnesium ; Calcium ; Apatite crystals ; Enamel ; Dentin ; Bone
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Summary Magnesium (Mg) is a conspicuous constituent of hard tissues but its possible role in biomineralization is poorly understood. It is possible that Mg2+ adsorbed onto bioapatites may contribute to the modulation of crystal growth as such inhibitory activity has been reported for synthetic apatites. The present study was undertaken to determine the adsorption isotherms of Mg ions onto synthetic apatites and biominerals in tooth and bone tissues in the presence of other ions of natural occurrence. Synthetic crystals used as adsorbents were hydroxyapatite and, as a better prototype for the biomineral, Mg-containing carbonatoapatite. Human enamel and dentin materials were obtained from extracted, caries-free, permanent teeth. Porcine dentin materials at two developmental stages were obtained from erupted deciduous and unerupted permanent teeth of a 6-month-old slaughtered piglet. Porcine bone was obtained from the cortical portion of the mandible of the same animal. All biomineral samples were pulverized and then treated by plasma ashing (deproteination) at about 60°C. Each of the powdered samples was equilibrated in solutions containing various initial concentrations of Mg2+, Ca2+, and Na+ (or K+) as nitrate salts. Following equilibration, concentrations (and activities) of magnesium and calcium ions in the experimental solution were determined. The pH values of the equilibrium solutions were in the range of 6.2–6.5. Experimental data of the Mg adsorption onto hydroxyapatite were interpreted on the basis of a Langmuir-type model for binary systems assuming competition of Mg2+ and Ca2+ for the same adsorption sites on the crystal surfaces of the apatites. According to this model, the adsorbed Mg is expressed as a function of the ionic activity ratio (Mg2+)/(Ca2+) in the equilibrium solution. The model contains two parameters, the adsorption selectivity constant Ks and the maximum number of adsorption sites N (μmol/g). The numerical values of Ks were similar for all adsorbents used (synthetic and biological) and indicated the preferential adsorption of Ca2+ probably due to spacial restrictions extending to the very surface of the crystals. The initial level of Mg2+ in the surface pool was different in the various biominerals, probably reflecting the composition of fluid in which the biominerals were formed. Whereas the surface pool of Mg of human enamel was marginal, only 5% of the total Mg, significant fractions of the total Mg in human and porcine dentins (about 20–30%), and porcine bone (about 40%) existed on the crystal surfaces. There were significant differences in the total Mg and the value of the parameter N between young (unerupted) and mature (erupted) dentin minerals. It was ascertained that the occupancy of adsorption sites by Mg ions became greater with maturation of the dentin tissues. The overall results suggest that the Mg-mineral interaction in tooth and bone tissues may be a highly tissue-specific process, presumably reflecting differences in fluid composition (particularly Ca and Mg activities) responsible for biomineralization.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Calcified tissue international 36 (1984), S. 48-59 
    ISSN: 1432-0827
    Keywords: Salivary proteins ; Adsorption ; Thermodynamics ; Kinetics ; Hydroxyapatite
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Summary Equilibrium and kinetic experiments were conducted to investigate the factors determining the adsorption of salivary macromolecules onto hydroxyapatite. Using amino acids and other small adsorbates, it was determined that the carboxyl attached to the α carbon does not appear to adsorb onto HA and the affinities of side-chain carboxyls are much smaller than that of the phosphate group (phosphoserine). Hydroxyl (serine) displays an extremely high affinity, but its adsorption site on HA is different and the number of such sites is much smaller than found for the rest of the functional groups investigated. It is shown that the information obtained from small molecules cannot be readily applied to prediction of the adsorption behavior of salivary macromolecules and polypeptides. The kinetics of adsorption of the salivary phosphopeptide statherin, a polyaspartate, and the salivary prolinerich phosphoprotein PRP3 are consistent with the reversibility of the adsorption process; no conclusion was possible in the case of the protein PRP1. Apparent irreversibility cannot be explained on the basis of multipoint binding or the properties of the carboxyl versus phosphate group; it appears that secondary structure determines to a significant extent the adsorption properties of the macromolecules. Calculation of the thermodynamic molar quantities of adsorption of PRP1, PRP3, andl-ASP onto HA showed that the process is entropically driven. The functional relationship between partial molar entropy and adsorption coverage is similar for the two proteins, but quite different from that for aspartate. Explanations for these results are advanced on the bases of changes in structure configurations and displacement of water from the adsorbate and the adsorbent surface, the second factor being the dominant one in the adsorption of a small molecule such asl-ASP.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Calcified tissue international 36 (1984), S. 651-658 
    ISSN: 1432-0827
    Keywords: Salivary proteins ; Hydroxyapatite ; Adsorption ; Precipitation-inhibitor ; Phosphoserine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Summary Inhibition of seeded apatitic crystal growth by human salivary acidic proline-rich phosphoproteins (PRP) has been related to their adsorption onto the apatite seeds. The amino-terminal 30-residue segment of the PRP makes an important contribution to this adsorption. This peptide (PRP1(T1)) and its dephosphorylated analogue from PRP3 (PRP3(T1)DP) were prepared. They have identical sequences, except the phosphates at residues 8 and 22 in PRP1(T1) are absent from PRP3(T1)DP. Adsorption of these peptides onto hydroxyapatite and their effect on crystal growth from a defined supersaturated solution was studied. Adsorption behavior was adequately described by the Langmuir adsorption isotherm. The adsorption affinity constant of PRP1(T1) (K=20,200 ml/µmol) was more than 10 times the corresponding value for PRP3(T1)DP (1,800 ml/µmol), and similar to that of the parent protein, PRP1 (26,200 ml/µmol). Inhibition of crystal growth by the peptides was interpreted in terms of the fractional coverage of the maximum number of adsorption sites (as derived from the adsorption isotherms), suggesting that the molecules block, by adsorption, specific growth sites on these surfaces. Comparison of precipitation kinetics showed that PRP1(T1) is a more effective inhibitor than PRP3(T1)DP at the same initial concentration (10−6−10−7 M). However, on the basis of per mol adsorbed, PRP3(T1)DP displays a greater inhibitory activity; such a behavior is consistent with a more open molecular structure which blocks more growth sites per mol adsorbed than PRP1(T1). Because of its high affinity constant, preadsorbed PRP1(T1) remains in the condensed state in the supersaturated solution used, whereas the preadsorbed PRP3(T1)DP molecules desorb to some extent, resulting in a decrease in inhibitory activity. The results show that the amino-terminal segment of the PRP and the two phosphoserine residues present in this segment are particularly important in the function proposed for these proteins in the oral environment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Calcified tissue international 28 (1979), S. 7-16 
    ISSN: 1432-0827
    Keywords: Salivary proteins ; Adsorption ; Hydroxyapatite ; Precipitation inhibitors ; Crystal growth
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Summary Inhibition of calcium phosphate precipitation in saliva, and prevention of the formation of mineral accretions on tooth surfaces, has been ascribed to the existence of inhibiting salivary macromolecules. Marked reductions in the crystal growth rate of hydroxyapatite (HA) seeds were measured in supersaturated solutions containing either of two proline-rich proteins, PRP1 or PRP3, or statherin; the three macromolecules were isolated from human parotid saliva. The reductions were also observed when the HA seeds were pretreated with solutions of the macromolecules before adding them to the supersaturated calcium phosphate solution. This effect was very similar in the case of the two PRPs and it was directly related to the extent of adsorption site coverage of these proteins on the HA seeds. The effect of statherin was larger than anticipated from its adsorption behavior. However, comparison on the basis of number of moles adsorbed per unit area of HA shows that the PRP are more effective inhibitors than statherin. The macromolecule concentrations used were considerably lower than those in the salivery secretions, therefore these macromolecules could readily prevent mineral accretion on tooth surfaces through their adsorption onto the enamel surface.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...