ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1987-12-18
    Description: The initial event in the infection of human T lymphocytes, macrophages, and other cells by human immunodeficiency virus (HIV-1) is the attachment of the HIV-1 envelope glycoprotein gp120 to its cellular receptor, CD4. As a step toward designing antagonists of this binding event, soluble, secreted forms of CD4 were produced by transfection of mammalian cells with vectors encoding versions of CD4 lacking its transmembrane and cytoplasmic domains. The soluble CD4 so produced binds gp120 with an affinity and specificity comparable to intact CD4 and is capable of neutralizing the infectivity of HIV-1. These studies reveal that the high-affinity CD4-gp120 interaction does not require other cell or viral components and may establish a novel basis for therapeutic intervention in the acquired immune deficiency syndrome (AIDS).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, D H -- Byrn, R A -- Marsters, S A -- Gregory, T -- Groopman, J E -- Capon, D J -- New York, N.Y. -- Science. 1987 Dec 18;238(4834):1704-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Genentech, Inc., South San Francisco, CA 94080.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3500514" target="_blank"〉PubMed〈/a〉
    Keywords: Acquired Immunodeficiency Syndrome/immunology ; Animals ; Antigens, Differentiation, T-Lymphocyte/*immunology ; Cell Line ; HIV/immunology/*pathogenicity/physiology ; Humans ; Receptors, Virus/immunology/*physiology ; Recombinant Proteins/immunology ; T-Lymphocytes/*immunology ; Viral Envelope Proteins/immunology/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1987-10-30
    Description: To investigate whether a particular receptor subtype can be coupled to multiple effector systems, recombinant M2 muscarinic receptors were expressed in cells lacking endogenous receptor. The muscarinic agonist carbachol both inhibited adenylyl cyclase and stimulated phosphoinositide hydrolysis. The stimulation of phosphoinositide hydrolysis was significantly less efficient and more dependent on receptor levels than the inhibition of adenylyl cyclase. Both responses were mediated by guanine nucleotide binding proteins, as evidenced by their inhibition by pertussis toxin; the more efficiently coupled adenylyl cyclase response was significantly more sensitive. Thus, individual subtypes of a given receptor are capable of regulating multiple effector pathways.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ashkenazi, A -- Winslow, J W -- Peralta, E G -- Peterson, G L -- Schimerlik, M I -- Capon, D J -- Ramachandran, J -- CA16417/CA/NCI NIH HHS/ -- HL23632/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1987 Oct 30;238(4827):672-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology, Genentech, Inc., South San Francisco, CA 94080.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2823384" target="_blank"〉PubMed〈/a〉
    Keywords: Adenylate Cyclase Toxin ; Adenylyl Cyclases/*metabolism ; Animals ; Carbachol/pharmacology ; Cell Line ; Cricetinae ; Cyclic AMP/biosynthesis ; GTP-Binding Proteins/*metabolism ; Gene Expression Regulation ; Guanosine 5'-O-(3-Thiotriphosphate) ; Guanosine Triphosphate/analogs & derivatives/metabolism ; Oxotremorine/pharmacology ; Pertussis Toxin ; Phosphatidylinositols/*metabolism ; Receptors, Muscarinic/*metabolism ; Recombinant Proteins ; Thionucleotides/metabolism ; Virulence Factors, Bordetella/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...