ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Immunohistochemistry  (2)
  • Adenosine receptors  (1)
  • 1990-1994  (3)
  • 1
    ISSN: 1432-0878
    Keywords: Atrial natriuretic peptide ; Brain natriuretic peptide ; C-type natriuretic peptide ; Heart ; Brain, vertebrate ; Immunohistochemistry ; Squalus acanthias (Elasmobranchii) ; Myxine glutinosa (Cyclostomata)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The avidin-biotin peroxidase technique was used to determine the distribution of natriuretic peptides in the hearts and brains of the dogfishSqualus acanthias and the Atlantic hagfishMyxine glutinosa. Three antisera were used: one raised against porcine brain natriuretic peptide which cross-reacts with atrial natriuretic and C-type natriuretic peptides (termed natriuretic peptide-like immunoreactivity); the second raised against porcine brain natriuretic peptide which cross-reacts with C-type natriuretic peptide, but not with atrial natriuretic peptide (termed porcine brain natriuretic peptide-like immunoreactivity); and the third raised against rat atrial natriuretic peptide (termed rat atrial natriuretic peptide-like immunoreactivity). Only natriuretic peptide-like immunoreactivity was observed in the heart ofS. acanthias which was most likely due to the antiserum cross-reacting with C-type natriuretic peptide. No immunoreactivity was found in theM. glutinosa heart. In the brain ofS. acanthias, natriuretic peptide-like immunoreactive fibres were located in many areas of the telencephalon, diencephalon, mesencephalon, rhombencephalon, and spinal cord. Extensive immunoreactivity was observed in the hypothalamo-hypophyseal tract and the neurointermediate lobe of the hypophysis. Natriuretic peptide-like immunoreactive perikarya were found in ventromedial regions of the telencephalon and in the nucleus preopticus. Most perikarya had short, thick processes which extended toward the ventricle. Another group of perikarya was observed in the rhombencephalon. Porcine brain natriuretic peptide-like immunoreactive fibres were observed in the telencephalon, diencephalon, mesencephalon, and rhombencephalon, but perikarya were only present in the preoptic area. In theM. glutinosa brain, natriuretic peptide-like immunoreactive fibres were present in all regions. Immunoreactive perikarya were observed in the pallium, primordium hippocampi, pars ventralis thalami, pars dorsalis thalami, nucleus diffusus hypothalami, nucleus profundus, nucleus tuberculi posterioris, and nucleus ventralis tegmenti. Procine brain natriuretic peptide-like immunoreactive perikarya and fibres had a similar, but less abundant distribution than natriuretic peptide-like immunoreactive structures. Although the chemical structures of natriuretic peptides in the brains of dogfish and hagfish are unknown, these observations show that a component of the natriuretic peptide complement is similar to porcine brain natriuretic peptide or porcine C-type natriuretic peptide. The presence of natriuretic peptides in the brain suggest they could be important neuromodulators and/or neurotransmitters. Furthermore, there appears to be divergence in the structural forms of natriuretic peptides in the hearts and brains of dogfish and hagfish.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 269 (1992), S. 151-158 
    ISSN: 1432-0878
    Keywords: Atrial natriuretic peptide ; Brain natriuretic peptide ; C-type natriuretic peptide ; Heart ; Brain vertebrate ; Immunohistochemistry ; Opsanus beta (Teleostei)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The distribution of natriuretic peptide immunoreactivity was determined in the heart and brain of the gulf toadfish Opsanus beta using the avidin-biotin peroxidase technique. Four antisera were used: the first raised against porcine brain natriuretic peptide which cross-reacts with atrial natriuretic and C-type natriuretic peptides (termed natriuretic peptide-like immunoreactivity); the second raised against porcine brain natriuretic peptide which cross-reacts with C-type natriuretic peptide but not with atrial natriuretic peptide (termed porcine brain natriuretic peptide-like immunoreactivity); the third raised against rat atrial natriuretic peptide; and the fourth raised against eel atrial natriuretic peptide. Natriuretic peptide- and porcine brain natriuretic peptide-like immunoreactivity was observed in all cardiac muscle cells of the atrium. In the ventricle, natriuretic peptide-like immunoreactivity was found in all cardiac muscle cells, however porcine brain natriuretic peptidelike immunoreactivity was confined to muscle cells adjacent to the epicardium. There was no discernible difference in the distribution of natriuretic peptide-like immunoreactivity and porcine brain natriuretic peptide-like immunoreactivity in the brain. Immunoreactive perikarya were observed only in the preoptic region of the diencephalon, and many immunoreactive fibres were found in the telencephalon, preoptic area, and rostral hypothalamus, lateral to the thalamic region. There was no immunoreactivity in any region of the hypophysis. A pair of distinct immunoreactive fibre tracts ran caudally from the preoptic area to the thalamic region, from which fibres extended to the posterior commissure, area praetectalis, dorsolateral regions of the midbrain tegmentum, and tectum. Many immunoreactive fibres were present in the rostral regions of the inferior lobes of the hypothalamus and in the dorsolateral and ventrolateral aspects of the rhombencephalon. No immunoreactivity was observed in the heart and brain using rat atrial natriuretic and eel natriuretic peptide antisera. Although the chemical structure of natriuretic peptides in the heart and brain of toadfish is unknown, these observations show that a component of the natriuretic peptide complement is similar to porcine brain natriuretic and/or porcine C-type natriuretic peptides. The presence of natriuretic peptides in the brain suggests that they could be important neuromodulators and/or neurotransmitters.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 162 (1992), S. 179-183 
    ISSN: 1432-136X
    Keywords: Adenosine receptors ; Aortic smooth muscle ; dogfish shark, Squalus acanthias
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Isolated, endothelium-free rings of vascular smooth muscle (VSM) from the ventral aorta of the dogfish shark, Squalus acanthias, were used to examine the vasoactive effects of various adenosine agonists. Cumulative addition of 2-chloroadenosine (2 Cl-ADO) over the concentration range 10 nM–1 mM resulted in a biphasic response, with a significant increase in tension at 1 μM and a more significant decline in tension at 100 μM and 1 mM, suggesting that this tissue may possess both A1 and A2 adenosine receptors. N6-Cyclopentyladenosine (N-6 CPA) and N6-(2-phenylisopropyl)adenosine, R(-)isomer (R-PIA), generally considered to be more A1 specific, also produced slight, but significant increases in tension, but only at relatively high concentrations. The more specific A1 agonist, N6-(25)-[2-endo-norbonyl] adenosine [(S)-ENBA] produced a significant increase in tension at 1 pM, reaching 28% above control at 10 nM. The response to (S)-ENBA was also biphasic, with a fall in tension at 10 μM. The relatively non-specific agonist 5′-N-ethylcarboxamidoadenosine (NECA) produced a small, but significant, increase in tension at 1 μM, with no subsequent decline in tension at higher concentrations. These results allow us to assign a tentative structure-activity relationship (SAR) for an increase in tension of (S)-ENBA≫R-PIA≥2-Cl ADO=N-6 CPA=NECA; for the decrease, the SAR is (S)-ENBA〉2-Cl ADO〉R-PIA〉N-6 CPA=NECA. These SARs are consistent with the hypothesis that the VSM from the ventral aorta of this elasmobranch fish contains both A1 and A2 adenosine receptors. This is the first such description of both adenosine receptors in fish VSM. The role of a putative release of adenosine from the fish heart on branchial hemodynamics remains to be determined.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...