ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-01-18
    Description: Cells need to adapt to dynamic environments. Yeast that fail to cope with dynamic changes in the abundance of glucose can undergo growth arrest. We show that this failure is caused by imbalanced reactions in glycolysis, the essential pathway in energy metabolism in most organisms. The imbalance arises largely from the fundamental design of glycolysis, making this state of glycolysis a generic risk. Cells with unbalanced glycolysis coexisted with vital cells. Spontaneous, nongenetic metabolic variability among individual cells determines which state is reached and, consequently, which cells survive. Transient ATP (adenosine 5'-triphosphate) hydrolysis through futile cycling reduces the probability of reaching the imbalanced state. Our results reveal dynamic behavior of glycolysis and indicate that cell fate can be determined by heterogeneity purely at the metabolic level.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉van Heerden, Johan H -- Wortel, Meike T -- Bruggeman, Frank J -- Heijnen, Joseph J -- Bollen, Yves J M -- Planque, Robert -- Hulshof, Josephus -- O'Toole, Tom G -- Wahl, S Aljoscha -- Teusink, Bas -- New York, N.Y. -- Science. 2014 Feb 28;343(6174):1245114. doi: 10.1126/science.1245114. Epub 2014 Jan 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Systems Bioinformatics/Amsterdam Institute for Molecules, Medicines and Systems (AIMMS)/Netherlands Institute for Systems Biology, VU University, De Boelelaan 1085, 1081 HV Amsterdam, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24436182" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Energy Metabolism ; Glucose/*metabolism ; Glucosyltransferases/genetics/metabolism ; *Glycolysis ; Hydrogen-Ion Concentration ; Hydrolysis ; Models, Biological ; Saccharomyces cerevisiae/*growth & development/*metabolism ; Trehalose/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...