ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Neural computing & applications 7 (1998), S. 71-77 
    ISSN: 1433-3058
    Keywords: Adaptive control ; Linearisable nonlinear system ; Lyapunov stability ; RBF neural network ; Uncertain dynamics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mathematics
    Notes: Abstract An RBF neural network-based adaptive control is proposed for Single-Input and Single-Output (SISO) linearisable nonlinear systems in this paper. It is shown that a SISO nonlinear system is first linearised by using the differential geometric approach in the state space, and the linearised nonlinear system is then treated as a partially known system. The known dynamics are used to design a nominal feedback controller to stabilise the nominal system, and an adaptive RBF neural network-based compensator is then designed to compensate for the effects of uncertain dynamics. The main function of the RBF neural network in this work is to adaptively learn the upper bound of the system uncertainty, and the output of the neural network is then used to adaptively adjust the gain of the compensator so that the strong robustness with respect to unknown dynamics can be obtained, and the tracking error between the plant output and the desired reference signal can asymptotically converge to zero. A simulation example is performed in support of the proposed scheme.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...