ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1978-03-31
    Description: Mouse spinal neurons grown in tissue culture were used to study the electrophysiological pharmacology of the opiate peptide leucine-enkephalin. Enkephalin depressed glutamate-evoked responses in a noncompetitive manner independent of any other effects on membrane properties. The results demonstrate a neuromodulatory action of opiate peptide functionally distinct from the conventional neurotransmitter class of operation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barker, J L -- Neale, J H -- Smith, T G Jr -- Macdonald, R L -- New York, N.Y. -- Science. 1978 Mar 31;199(4336):1451-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/204016" target="_blank"〉PubMed〈/a〉
    Keywords: Cells, Cultured ; Endorphins/*pharmacology ; Enkephalins/antagonists & inhibitors/*pharmacology ; Excitatory Amino Acid Antagonists ; Glutamates/*pharmacology ; Iontophoresis ; Naloxone/pharmacology ; Neurons/*drug effects ; Spinal Cord ; Synapses/*drug effects ; Synaptic Transmission/*drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1978-05-19
    Description: Barbiturate anesthetics, but not anticonvulsants, abolish the spontaneous activity of cultured spinal cord neurons; directly increase membrane conductance, an effect which is suppressed by the gamma-aminobutyric acid (GABA) antagonists picrotoxin and penicillin; and are more potent than anticonvulsants in augmenting GABA and depressing glutamate responses. Barbiturate anticonvulsants abolish picrotoxin-induced convulsive activity. These results indicate qualitative and quantitative differences between anesthetic and anticonvulsant barbiturates, which may explain their different clinical effects.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Macdonald, R L -- Barker, J L -- New York, N.Y. -- Science. 1978 May 19;200(4343):775-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/205953" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials/drug effects ; Cells, Cultured ; Electric Conductivity ; Glutamates/pharmacology ; Membrane Potentials/drug effects ; Neurons/*drug effects ; Pentobarbital/*pharmacology ; Phenobarbital/*pharmacology ; Picrotoxin/pharmacology ; Receptors, Neurotransmitter/drug effects ; gamma-Aminobutyric Acid/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1980-05-30
    Description: The cellular mechanisms underlying picrotoxin-induced convulsive activity were studied by using mouse spinal neurons growing in tissue culture. Picrotoxin-induced convulsive activity in most but not all of the cells studied. The activity could be inverted by polarizing to positive potentials and eliminated either by decreasing the ratio of calcium to magnesium or by applying tetrodotoxin. When applied locally to individual cells, picrotoxin lowered spike threshold and induced spontaneous firing in some but not all cells tested. The results suggest that picrotoxin-induced convulsive activity involves rapidly summating synaptic activity which may be evoked by high-frequency repetitive firing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barker, J L -- MacDonald, J F -- New York, N.Y. -- Science. 1980 May 30;208(4447):1054-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7375918" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials/drug effects ; Animals ; Calcium/pharmacology ; Cells, Cultured ; Magnesium/pharmacology ; Membrane Potentials/drug effects ; Mice ; Picrotoxin/*pharmacology ; Seizures/*chemically induced ; Spinal Cord/*drug effects/physiology ; Synapses/*drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1980-01-11
    Description: Stereoisomers of the barbiturate anesthetic pentobarbital were applied to mouse spinal neurons growing in tissue culture. Intracellular recordings of neuronal membrane properties revealed that the (+) and (-) isomers caused direct changes in membrane potential and conductance on some but not all of the cells tested. The action of the (+) isomer was predominantly excitatory, whereas the (-) isomer produced predominantly inhibitory responses. The (-) isomer was considerably more effective in potentiating inhibitory responses to the transmitter gamma-aminobutyric acid. The results show that pentobarbital has multiple effects on neuronal excitability and demonstrate the presence of stereospecific sites of barbiturate action on central neurons.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, L Y -- Barker, J L -- New York, N.Y. -- Science. 1980 Jan 11;207(4427):195-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7350656" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials/drug effects ; Animals ; Cells, Cultured ; Dose-Response Relationship, Drug ; Electric Conductivity ; Membrane Potentials/drug effects ; Mice ; Neural Inhibition/drug effects ; Neurons/*drug effects ; Pentobarbital/*pharmacology ; Spinal Cord/embryology ; Stereoisomerism ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...