ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: An impedance eduction theory for a rigid wall duct containing an acoustic liner with an unknown impedance and uniform grazing flow is presented. The unique features of the theory are: 1) non-planar waves propagate in the hard wall sections of the duct, 2) input data consist solely of complex acoustic pressures acquired on a wall adjacent to the liner, and 3) multiple higher-order modes may exist in the direction perpendicular to the liner and the opposite rigid wall. The approach is to first measure the axial propagation constant of a dominant higher-order mode in the liner sample section. This axial propagation constant is then used in conjunction with a closed-form solution to a reduced form of the convected Helmholtz equation and the wall impedance boundary condition to educe the liner impedance. The theory is validated on a conventional liner whose impedance spectrum is educed in two flow ducts with different cross sections. For the frequencies and Mach numbers of interest, no higher-order modes propagate in the hard wall sections of the smaller duct. A benchmark method is used to educe the impedance spectrum in this duct. A dominant higher-order vertical mode propagates in the larger duct for similar test conditions, and the current theory is applied to educe the impedance spectrum. Results show that when the theory is applied to data acquired in the larger duct with a dominant higher-order vertical mode, the same impedance spectra is educed as that obtained in the small duct where only the plane wave mode is present and the benchmark method is used. This result holds for each higher-order vertical mode that is considered.
    Keywords: Acoustics; Aircraft Propulsion and Power
    Type: NF1676L-17601 , (AVIATION 2014) AIAA Aviation and Aeronautics Forum and Exposition; Jun 16, 2014 - Jun 20, 2014; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The broadband component of fan noise has grown in relevance with an increase in bypass ratio and incorporation of advanced fan designs. Therefore, while the attenuation of fan tones remains a major factor in engine nacelle acoustic liner design, the simultaneous reduction of broadband fan noise levels has received increased interest. As such, a previous investigation focused on improvements to an established broadband acoustic liner optimization process using the Advanced Noise Control Fan (ANCF) rig as a demonstrator. Constant-depth, double-degree of freedom and variable-depth, multi-degree of freedom liner designs were carried through design, fabrication, and testing. This paper addresses a number of areas for further research identified in the initial assessment of the ANCF study. Specifically, incident source specification and uncertainty in some aspects of the predicted liner impedances are addressed. This information is incorporated in updated predictions of the liner performance and comparisons with measurement are greatly improved. Results illustrate the value of the design process in concurrently evaluating the relative costs/benefits of various liner designs. This study also provides further confidence in the integrated use of duct acoustic propagation/radiation and liner modeling tools in the design and evaluation of novel broadband liner concepts for complex engine configurations.
    Keywords: Acoustics; Aircraft Propulsion and Power
    Type: NF1676L-20210 , AIAA/CEAS Aeroacoustics Conference; Jun 22, 2015 - Jun 26, 2015; Dallas, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Advanced fan designs (including higher bypass ratios) and shorter engine nacelles have highlighted a need for increased fan noise reduction over a broader frequency range. With these observations in mind, an acoustic liner optimization process has been developed to achieve improved broadband liner designs. A series of advanced liner design studies at increasing technology readiness levels have been conducted as the overall optimization methodology has been enhanced. As part of the analysis, the overall design and evaluation capability was extended such that external observer locations may be included in the optimization process. This enhancement will provide a much wider design space in designing advanced broadband liners. In this work, further validation was pursued through the fabrication and testing of two liner designs for the NASA Glenn DGEN Aero-propulsion Research Turbofan (DART). The DART was used to document the efficacy of acoustic liners installed in the inlet of the DGEN380. An advanced Multi-Degree of Freedom Liner was designed, fabricated, and tested, along with a traditional Single-Degree-of-Freedom Liner, and those results compared to a hardwall baseline inlet. Farfield acoustic data were acquired from and external array, evaluated and reported herein terms of overall, broadband, and tonal components of the insertion loss. The predicted attenuation results generally matched expected trends of the measured data for the conditions considered.
    Keywords: Acoustics; Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN68122 , AIAA/CEAS Aeroacoustics Conference; May 20, 2019 - May 23, 2019; Delft; Netherlands
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...