ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Acoustic measurements  (1)
  • Atm/Ocean Structure/ Phenomena  (1)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 2006–2024, doi:10.1175/JPO-D-14-0234.1.
    Description: The effects of wind-driven whitecapping on the evolution of the ocean surface boundary layer are examined using an idealized one-dimensional Reynolds-averaged Navier–Stokes numerical model. Whitecapping is parameterized as a flux of turbulent kinetic energy through the sea surface and through an adjustment of the turbulent length scale. Simulations begin with a two-layer configuration and use a wind that ramps to a steady stress. This study finds that the boundary layer begins to thicken sooner in simulations with whitecapping than without because whitecapping introduces energy to the base of the boundary layer sooner than shear production does. Even in the presence of whitecapping, shear production becomes important for several hours, but then inertial oscillations cause shear production and whitecapping to alternate as the dominant energy sources for mixing. Details of these results are sensitive to initial and forcing conditions, particularly to the turbulent length scale imposed by breaking waves and the transfer velocity of energy from waves to turbulence. After 1–2 days of steady wind, the boundary layer in whitecapping simulations has thickened more than the boundary layer in simulations without whitecapping by about 10%–50%, depending on the forcing and initial conditions.
    Description: We thank Skidmore College for financial and infrastructure support, and Skidmore and the National Science Foundation for funding travel to meetings where early versions of this work were presented. We also thank the National Science Foundation, Oregon State University, Jonathan Nash, and Joe Jurisa for funding and hosting a workshop on River Plume Mixing in October, 2013, where ideas and context for this paper were developed.
    Description: 2016-02-01
    Keywords: Circulation/ Dynamics ; Mixing ; Turbulence ; Wave breaking ; Wind stress ; Atm/Ocean Structure/ Phenomena ; Mixed layer
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 27 (2010): 889-907, doi:10.1175/2009JTECHO682.1.
    Description: Recently, the velocity observations of acoustic Doppler current profilers (ADCPs) have been successfully used to estimate turbulent Reynolds stresses in estuaries and tidal channels. However, the presence of surface gravity waves can significantly bias stress estimates, limiting application of the technique in the coastal ocean. This work describes a new approach to estimate Reynolds stresses from ADCP velocities obtained in the presence of waves. The method fits an established semiempirical model of boundary layer turbulence to the measured turbulent cospectra at frequencies below those of surface gravity waves to estimate the stress. Applied to ADCP observations made in weakly stratified waters and variable significant wave heights, estimated near-bottom and near-surface stresses using this method compared well with independent estimates of the boundary stresses in contrast to previous methods. Additionally, the vertical structure of tidal stress estimated using the new approach matched that inferred from a linear momentum balance at stress levels below the estimated stress uncertainties. Because the method makes an estimate of the horizontal turbulent length scales present as part of the model fit, these results can also enable a direct correction for the mean bias errors resulting from instrument tilt, if these scales are long relative to the beam separation.
    Description: AK acknowledges support from the WHOI Coastal Ocean Institute, and SL acknowledges support from NSF Ocean Science Grant OCE-0548961.
    Keywords: Gravity Waves ; Surface layer ; Acoustic measurements
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...