ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Acid-base regulation; Alkalinity, total; Alkalinity, total, standard error; Animalia; Aragonite saturation state; Benthic animals; Benthos; Bicarbonate ion; Biomass/Abundance/Elemental composition; Boron/Calcium ratio; Calcification/Dissolution; Calcification rate; Calcifying fluid, aragonite saturation state; Calcite saturation state; Calculated using seacarb; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cnidaria; Containers and aquaria (20-1000 L or 〈 1 m**2); Event label; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Full width at half maximum; Goniopora sp.; Gross photosynthesis rate, oxygen; Hydrolithon reinboldii; Indian Ocean; Laboratory experiment; Macroalgae; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Plantae; Potentiometric; Potentiometric titration; Primary production/Photosynthesis; Registration number of species; Respiration; Respiration rate, oxygen; Rhodophyta; Salinity; Shell_Island; Single species; Site; Species; Tallon_Island; Temperature, water; Treatment; Tropical; Type; Uniform resource locator/link to reference; δ11B  (1)
  • Calibration
Collection
Keywords
Years
  • 1
    Publication Date: 2024-03-15
    Description: Ocean acidification is a threat to the continued accretion of coral reefs, though some undergo daily fluctuations in pH exceeding declines predicted by 2100. We test whether exposure to greater pH variability enhances resistance to ocean acidification for the coral Goniopora sp. and coralline alga Hydrolithon reinboldii from two sites: one with low pH variability (less than 0.15 units daily; Shell Island) and a site with high pH variability (up to 1.4 pH units daily; Tallon Island). We grew populations of both species for more than 100 days under a combination of differing pH variability (high/low) and means (ambient pH 8.05/ocean acidification pH 7.65). Calcification rates of Goniopora sp. were unaffected by the examined variables. Calcification rates of H. reinboldii were significantly faster in Tallon than in Shell Island individuals, and Tallon Island individuals calcified faster in the high variability pH 8.05 treatment compared with all others. Geochemical proxies for carbonate chemistry within the calcifying fluid (cf) of both species indicated that only mean seawater pH influenced pHcf. pH treatments had no effect on proxies for Omega cf. These limited responses to extreme pH treatments demonstrate that some calcifying taxa may be capable of maintaining constant rates of calcification under ocean acidification by actively modifying Omega cf.
    Keywords: Acid-base regulation; Alkalinity, total; Alkalinity, total, standard error; Animalia; Aragonite saturation state; Benthic animals; Benthos; Bicarbonate ion; Biomass/Abundance/Elemental composition; Boron/Calcium ratio; Calcification/Dissolution; Calcification rate; Calcifying fluid, aragonite saturation state; Calcite saturation state; Calculated using seacarb; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cnidaria; Containers and aquaria (20-1000 L or 〈 1 m**2); Event label; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Full width at half maximum; Goniopora sp.; Gross photosynthesis rate, oxygen; Hydrolithon reinboldii; Indian Ocean; Laboratory experiment; Macroalgae; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Plantae; Potentiometric; Potentiometric titration; Primary production/Photosynthesis; Registration number of species; Respiration; Respiration rate, oxygen; Rhodophyta; Salinity; Shell_Island; Single species; Site; Species; Tallon_Island; Temperature, water; Treatment; Tropical; Type; Uniform resource locator/link to reference; δ11B
    Type: Dataset
    Format: text/tab-separated-values, 10537 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Terrestrial, Atmospheric and Oceanic Sciences 28 (2017): 517-524, doi:10.3319/TAO.2017.03.30.01.
    Description: Fine scale temperature structures, which are commonly found in the top few meters of shallow water columns, may result in deviations of the remotely sensed night-time sea surface temperatures (SST) by the MODIS-Aqua sensor (SSTsat) from the bulk sea surface temperatures (SSTbulk) that they purport to represent. The discrepancies between SSTsat and SSTbulk recorded by temperature loggers at eight stations with bottom depths of 2 - 20 m around the Dongsha Atoll (DSA) between June 2013 and May 2015 were examined. The SSTsat had an average cool bias error of -0.43 ± 0.59°C. The bias error was larger in the warmer (〉 26°C) waters which were presumably more strongly stratified. The root mean square error (RMSE) between SSTsat and SSTbulk, ±0.73°C, was 25% larger than that reported in the open northern South China Sea. An operational calibration algorithm was developed to increase the accuracy in the estimation of SSTbulk from SSTsat. In addition to removing the cool bias error, this algorithm also reduced the RMSE to virtually the same level as that found in the open northern South China Sea. With the application of the algorithm, in June 2015, the average SST in the lagoon of the DSA was raised by about 0.5°C to 31.1 ± 0.4°C, and the area of lagoon with SSTbulk above 31°C, the median value of the physiological temperature threshold of reef organisms, was increased by 69% to about three quarters of the lagoon.
    Description: This work was supported in part by the Key Research and Development Program of Shandong Province (grant no. 2015GSF117017) and Ocean University of China (grant no. 201513037 and 201512011) to Pan, and the Academia Sinica through grant titled “Ocean Acidification: Comparative biogeochemistry in shallow-water tropical coral reef ecosystems in a naturally acidic marine environment” to Wong.
    Keywords: Sea surface temperature ; Validation ; Remote sensing ; Dongsha Atoll ; Shallow waters ; Calibration
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...