ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AWI_SeaIce; Sea Ice Physics @ AWI  (3)
Collection
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Arndt, Stefanie; Meiners, Klaus M; Ricker, Robert; Krumpen, Thomas; Katlein, Christian; Nicolaus, Marcel (2017): Influence of snow depth and surface flooding on light transmission through Antarctic pack ice. Journal of Geophysical Research: Oceans, 122(3), 2108-2119, https://doi.org/10.1002/2016JC012325
    Publication Date: 2023-03-16
    Description: Snow on sea ice alters the properties of the underlying ice cover as well as associated physical and biological processes at the interfaces between atmosphere, sea ice, and ocean. The Antarctic snow cover persists during most of the year and contributes significantly to the sea-ice mass due to the widespread surface flooding and related snow-ice formation. Snow also enhances the sea-ice surface reflectivity of incoming shortwave radiation and determines therefore the amount of light being reflected, absorbed, and transmitted to the upper ocean. Here, we present results of a case study of spectral solar radiation measurements under Antarctic pack ice with an instrumented Remotely Operated Vehicle in the Weddell Sea in 2013. In order to identify the key variables controlling the spatial distribution of the under-ice light regime, we exploit under-ice optical measurements in combination with simultaneous characterization of surface properties, such as sea-ice thickness and snow depth. Our results reveal that the distribution of flooded and nonflooded sea-ice areas dominates the spatial scales of under-ice light variability for areas smaller than 100 m-by-100 m. However, the heterogeneous and highly metamorphous snow on Antarctic pack ice obscures a direct correlation between the under-ice light field and snow depth. Compared to the Arctic, light levels under Antarctic pack ice are extremely low during spring (〈 0. %). This is mostly a result of the distinctly different dominant sea ice and snow properties with seasonal snow cover (including strong surface melt and summer melt ponds) in the Arctic and a year-round snow cover and widespread surface flooding in the Southern Ocean.
    Keywords: AWI_SeaIce; Sea Ice Physics @ AWI
    Type: Dataset
    Format: application/zip, 17 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Itkin, Polona; Krumpen, Thomas (2017): Winter sea ice export from the Laptev Sea preconditions the local summer sea ice cover. The Cryosphere Discussions, 1-15, https://doi.org/10.5194/tc-2017-28
    Publication Date: 2023-03-16
    Description: Recent studies based on satellite observations have shown that there is a high statistical connection between the late winter (Feb-May) sea ice export out the Laptev Sea, and the ice coverage in the following summer. By means of airborne sea ice thickness surveys made over pack ice areas in the southeastern Laptev Sea, we show that years of offshore directed sea ice transport have a thinning effect on the late winter sea ice cover, and vice versa. Once temperature rise above freezing, these thin ice zones melt more rapidly and hence, precondition local anomalies in summer sea ice cover. The preconditioning effect of the winter ice dynamics for the summer sea ice extent is confirmed with a model sensitivity study where we replace the inter-annual summer atmospheric forcing by a climatology. In the model, years with high late winter sea ice export always result in a reduced sea ice cover, and vice versa. We conclude that the observed tendency towards an increased ice export further accelerates ice retreat in summer. The mechanism presented in this study highlights the importance of winter ice dynamics for summer sea ice anomalies in addition to atmospheric processes acting on the ice cover between May and September. Finally, we show that ice dynamics in winter not only precondition local summer ice extent, but also accelerate fast ice decay.
    Keywords: AWI_SeaIce; Sea Ice Physics @ AWI
    Type: Dataset
    Format: application/zip, 5 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2023-07-15
    Keywords: AWI_SeaIce; Sea Ice Physics @ AWI
    Type: Dataset
    Format: application/zip, 2.8 MBytes
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...