ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: Five bright elliptical galaxies in the Virgo Cluster, NGC 4365, NGC 4374 (M84), NGC 4406 (M86), NGC 4472 (M49), and NGC 4636, were observed with ASCA. In addition to the extended thermal X-ray emission of temperature kT approximately 1 keV, harder X-rays with color temperature kT greater than or equal to 2 keV were detected from all of them. The 2-10 keV luminosities of this hard component for the five galaxies, integrated within 5 min, are distributed within a relatively narrow range of (1-4) x 10(exp 40) ergs/s. The hard X-ray component is primarily attributed to the integrated emission from discrete X-ray sources. In NGC 4406 and NGC 4374 the data indicate that the hard component is contributed additionally by foreground/background emission from the hot intracluster medium (ICM) of the Virgo Cluster. The hard component of NGC 4472 seems also contributed by the Virgo ICM emission, but in this case there is evidence that the ICM brightness is locally enhanced within approximately 10 min of NGC 4472.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 2 - Letters (ISSN 0004-637X); 436; 1; p. L41-L45
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: We present our analysis of ASCA PV phase observation of the elliptical galaxy NGC 4636. Solid state imaging spectrometer (SIS) spectra in six concentric annuli centered on NGC 4636 are used to derive temperature, metallicity, and column density profiles for the hot interstellar medium. Outside of the central 3 min the temperature is roughly constant at approximately 0.85 keV, while the metallicity decreases from greater than 0.36 solar at the center to less than 0.12 solar at R approximately 9 min. The implications of this gradient for elliptical galaxy formation and the enrichment of intracluster gas are discussed. We derive a detailed mass profile consistent with the stellar velocity dispersion and with ROSAT position sensitive proportional counter (PSPC) and ASCA SIS X-ray temperature profiles. We find that NGC 4636 becomes dark matter dominated at roughly the de Vaucouleurs radius, and, at r approximately 100 kpc, the ratio of dark to luminous matter density is approximately 80 and solar mass/solar luminosity approximately equal to 150. Evidence for the presence of a cooling flow is also discussed.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 2 - Letters (ISSN 0004-637X); 436; 1; p. L79-L82
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-19
    Description: Nonlinear interactions of water group ions with large-amplitude whistler wave packets detected at the leading edge of steepened magnetosonic waves observed near Comet Giacobini-Zinner (GZ) are studied using test particle simulations of water-ion interactions with a model wave based on GZ data. Some of the water ions are found to be decelerated in the steepened portion of the magnetosonic wave to the resonance velocity with the whistler wave packets. Through resonance and related nonlinear interaction with the large-amplitude whistler waves, the water ions become trapped by the packet. An energy balance calculation demonstrates that the trapped ions lose their kinetic energy during the trapped motion in the packet. Thus, the nonlinear trapping motion in the wave structure leads to effective energy transfer from the water group ions to the whistler wave packets in the leading edge of the steepened MHD waves.
    Keywords: ASTROPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 16; 25-28
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-19
    Description: An ion beam resonates with R-mode waves at a high-frequency RH mode and a low-frequency RL mode. The nonlinear evolution of ion beam-generated RH waves is studied here by one-dimensional hybrid computer experiments. Both wave-particle and subsequent wave-wave interactions are examined. The competing process among coexisting RH and RL mode beam instabilities and repeated decay instabilities triggered by the beam-excited RH mode waves is clarified. It is found that the quenching of the RH instability is not caused by a thermal spreading of the ion beam, but by the nonlinear wave-wave coupling process. The growing RH waves become unstable against the decay instability. This instability involves a backward-traveling RH electromagnetic wave and a forward-traveling longitudinal sound wave. The inverse cascading process is found to occur faster than the growth of the RL mode. Wave spectra decaying from the RH waves weaken as time elapses and the RL mode waves become dominant at the end of the computer experiment.
    Keywords: ASTROPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 16; 9-12
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-08-29
    Description: Studies of intense hydromagnetic waves at Giacobini-Zinner are extended to investigate the mode and direction of wave propagation. Simultaneous high-resolution measurements of electron density fluctuations demonstrate that long period waves propagate in the magnetosonic mode. Principal axis analyses of the long period waves and accompanying partial rotations show that the sum of the wave phase rotations is 360 deg, indicating that both are parts of the same wave oscillation. The time sequence of the steepened waveforms observed by ICE shows that the waves must propagate towards the Sun with Cph less than Vsw. Observations are consistent with wave generation by resonant ion ring or ion beam instability which predicts right-hand polarized waves propagating in the ion beam (solar) direction. The large amplitudes and small scale sizes of the cometary waves suggest that rapid pitch-angle scattering and energy transfer with energetic ions should occur. Since the waves are highly compressive, first-order Fermi acceleration is forecast.
    Keywords: ASTROPHYSICS
    Type: ESA, Proceedings of the 20th ESLAB Symposium on the Exploration of Halley's Comet. Volume 3: Posters; p 457-460
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...