ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-01-25
    Description: The highly reduced nature of the enstatite meteorites (chondrites and achondrites) differs from that of all other types of stony meteorites. The silicates in the enstatite meteorites contain almost no FeO. In addition, many normally lithophile elements such as Na, Ca, Mg, Cr, and Ti display chalcophilic behavior. A study of the chemistry and mineralogy of the enstatite meteorites was undertaken to determine their resource potential. On average, about 99 percent of the volume of an enstatite achondrite, or aubrite, consists of only four silicate minerals: enstatite, Na-rich plagioclase, diopside, and forsterite, with enstatite being by far the most abundant mineral. The remaining one percent of the volume consists of troilite, kamacite, and trace amounts of oldhamite, daubreelite, ferromagnesian albandite, and schreibersite. Thus, the aubrites can be considered as a possible source for large quantities of Mg, Si, and O, but are of little interest as a source of anything else. The enstatite chondrites appear to be more promising candidates for resource utilization. The chondrites are generally divided into two groups: EH (high iron, fine-grained, with abundant chondrules); and EL (low iron, coarse-grained, with little or no evidence of chondrules). Metallic Ni-Fe makes up roughly 20-25 weight percent of each type of enstatite chondrite. These meteorites are also a good source of nitrogen. This is due in part to the presence of osbornite and sinoite. The latter mineral is restricted to EL chondrites, which typically have a higher bulk nitrogen content than the EH chondrites. Three valuable metals, Cr, Mn, and Ti, are concentrated in a few distinct sulfide phases in the enstatite chondrites. These sulfide phases are troilite and niningerite in EH chondrites and troilite, daubreelite, and ferroan alabandite in EL chondrites.
    Keywords: ASTROPHYSICS
    Type: Resources of Near-Earth Space: Abstracts; p 21
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: The conditions for Comet Halley formation are presently considered in light of the application of physical and chemical processes in the solar nebula environments to the present data base on the composition of the comet's gases. Key molecular ratios are compared to solar nebula model predictions, and the nebular thermochemistry is quantified for a range of solar elemental compositions which correspond to varying water depletion states in the inner nebula. Assuming that inner nebula chemistry is catalyzed by reaction on grains, it is judged that the abundances of the volatile C species CH4, CO, and CO2 in Halley could have been supplied by the solar nebula.
    Keywords: ASTROPHYSICS
    Type: Icarus (ISSN 0019-1035); 85; 380-393
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...