ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2002-06-01
    Description: The high degree of similarity between the mouse and human genomes is demonstrated through analysis of the sequence of mouse chromosome 16 (Mmu 16), which was obtained as part of a whole-genome shotgun assembly of the mouse genome. The mouse genome is about 10% smaller than the human genome, owing to a lower repetitive DNA content. Comparison of the structure and protein-coding potential of Mmu 16 with that of the homologous segments of the human genome identifies regions of conserved synteny with human chromosomes (Hsa) 3, 8, 12, 16, 21, and 22. Gene content and order are highly conserved between Mmu 16 and the syntenic blocks of the human genome. Of the 731 predicted genes on Mmu 16, 509 align with orthologs on the corresponding portions of the human genome, 44 are likely paralogous to these genes, and 164 genes have homologs elsewhere in the human genome; there are 14 genes for which we could find no human counterpart.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mural, Richard J -- Adams, Mark D -- Myers, Eugene W -- Smith, Hamilton O -- Miklos, George L Gabor -- Wides, Ron -- Halpern, Aaron -- Li, Peter W -- Sutton, Granger G -- Nadeau, Joe -- Salzberg, Steven L -- Holt, Robert A -- Kodira, Chinnappa D -- Lu, Fu -- Chen, Lin -- Deng, Zuoming -- Evangelista, Carlos C -- Gan, Weiniu -- Heiman, Thomas J -- Li, Jiayin -- Li, Zhenya -- Merkulov, Gennady V -- Milshina, Natalia V -- Naik, Ashwinikumar K -- Qi, Rong -- Shue, Bixiong Chris -- Wang, Aihui -- Wang, Jian -- Wang, Xin -- Yan, Xianghe -- Ye, Jane -- Yooseph, Shibu -- Zhao, Qi -- Zheng, Liansheng -- Zhu, Shiaoping C -- Biddick, Kendra -- Bolanos, Randall -- Delcher, Arthur L -- Dew, Ian M -- Fasulo, Daniel -- Flanigan, Michael J -- Huson, Daniel H -- Kravitz, Saul A -- Miller, Jason R -- Mobarry, Clark M -- Reinert, Knut -- Remington, Karin A -- Zhang, Qing -- Zheng, Xiangqun H -- Nusskern, Deborah R -- Lai, Zhongwu -- Lei, Yiding -- Zhong, Wenyan -- Yao, Alison -- Guan, Ping -- Ji, Rui-Ru -- Gu, Zhiping -- Wang, Zhen-Yuan -- Zhong, Fei -- Xiao, Chunlin -- Chiang, Chia-Chien -- Yandell, Mark -- Wortman, Jennifer R -- Amanatides, Peter G -- Hladun, Suzanne L -- Pratts, Eric C -- Johnson, Jeffery E -- Dodson, Kristina L -- Woodford, Kerry J -- Evans, Cheryl A -- Gropman, Barry -- Rusch, Douglas B -- Venter, Eli -- Wang, Mei -- Smith, Thomas J -- Houck, Jarrett T -- Tompkins, Donald E -- Haynes, Charles -- Jacob, Debbie -- Chin, Soo H -- Allen, David R -- Dahlke, Carl E -- Sanders, Robert -- Li, Kelvin -- Liu, Xiangjun -- Levitsky, Alexander A -- Majoros, William H -- Chen, Quan -- Xia, Ashley C -- Lopez, John R -- Donnelly, Michael T -- Newman, Matthew H -- Glodek, Anna -- Kraft, Cheryl L -- Nodell, Marc -- Ali, Feroze -- An, Hui-Jin -- Baldwin-Pitts, Danita -- Beeson, Karen Y -- Cai, Shuang -- Carnes, Mark -- Carver, Amy -- Caulk, Parris M -- Center, Angela -- Chen, Yen-Hui -- Cheng, Ming-Lai -- Coyne, My D -- Crowder, Michelle -- Danaher, Steven -- Davenport, Lionel B -- Desilets, Raymond -- Dietz, Susanne M -- Doup, Lisa -- Dullaghan, Patrick -- Ferriera, Steven -- Fosler, Carl R -- Gire, Harold C -- Gluecksmann, Andres -- Gocayne, Jeannine D -- Gray, Jonathan -- Hart, Brit -- Haynes, Jason -- Hoover, Jeffery -- Howland, Tim -- Ibegwam, Chinyere -- Jalali, Mena -- Johns, David -- Kline, Leslie -- Ma, Daniel S -- MacCawley, Steven -- Magoon, Anand -- Mann, Felecia -- May, David -- McIntosh, Tina C -- Mehta, Somil -- Moy, Linda -- Moy, Mee C -- Murphy, Brian J -- Murphy, Sean D -- Nelson, Keith A -- Nuri, Zubeda -- Parker, Kimberly A -- Prudhomme, Alexandre C -- Puri, Vinita N -- Qureshi, Hina -- Raley, John C -- Reardon, Matthew S -- Regier, Megan A -- Rogers, Yu-Hui C -- Romblad, Deanna L -- Schutz, Jakob -- Scott, John L -- Scott, Richard -- Sitter, Cynthia D -- Smallwood, Michella -- Sprague, Arlan C -- Stewart, Erin -- Strong, Renee V -- Suh, Ellen -- Sylvester, Karena -- Thomas, Reginald -- Tint, Ni Ni -- Tsonis, Christopher -- Wang, Gary -- Wang, George -- Williams, Monica S -- Williams, Sherita M -- Windsor, Sandra M -- Wolfe, Keriellen -- Wu, Mitchell M -- Zaveri, Jayshree -- Chaturvedi, Kabir -- Gabrielian, Andrei E -- Ke, Zhaoxi -- Sun, Jingtao -- Subramanian, Gangadharan -- Venter, J Craig -- Pfannkoch, Cynthia M -- Barnstead, Mary -- Stephenson, Lisa D -- New York, N.Y. -- Science. 2002 May 31;296(5573):1661-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Celera Genomics, 45 West Gude Drive, Rockville, MD 20850, USA. richard.mural@celera.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12040188" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Composition ; Chromosomes/*genetics ; Chromosomes, Human/genetics ; Computational Biology ; Conserved Sequence ; Databases, Nucleic Acid ; Evolution, Molecular ; Genes ; Genetic Markers ; *Genome ; *Genome, Human ; Genomics ; Humans ; Mice ; Mice, Inbred A/genetics ; Mice, Inbred DBA/genetics ; Mice, Inbred Strains/*genetics ; Molecular Sequence Data ; Physical Chromosome Mapping ; Proteins/chemistry/genetics ; Sequence Alignment ; *Sequence Analysis, DNA ; Species Specificity ; *Synteny
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-10-10
    Description: Plasmodium knowlesi is an intracellular malaria parasite whose natural vertebrate host is Macaca fascicularis (the 'kra' monkey); however, it is now increasingly recognized as a significant cause of human malaria, particularly in southeast Asia. Plasmodium knowlesi was the first malaria parasite species in which antigenic variation was demonstrated, and it has a close phylogenetic relationship to Plasmodium vivax, the second most important species of human malaria parasite (reviewed in ref. 4). Despite their relatedness, there are important phenotypic differences between them, such as host blood cell preference, absence of a dormant liver stage or 'hypnozoite' in P. knowlesi, and length of the asexual cycle (reviewed in ref. 4). Here we present an analysis of the P. knowlesi (H strain, Pk1(A+) clone) nuclear genome sequence. This is the first monkey malaria parasite genome to be described, and it provides an opportunity for comparison with the recently completed P. vivax genome and other sequenced Plasmodium genomes. In contrast to other Plasmodium genomes, putative variant antigen families are dispersed throughout the genome and are associated with intrachromosomal telomere repeats. One of these families, the KIRs, contains sequences that collectively match over one-half of the host CD99 extracellular domain, which may represent an unusual form of molecular mimicry.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2656934/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2656934/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pain, A -- Bohme, U -- Berry, A E -- Mungall, K -- Finn, R D -- Jackson, A P -- Mourier, T -- Mistry, J -- Pasini, E M -- Aslett, M A -- Balasubrammaniam, S -- Borgwardt, K -- Brooks, K -- Carret, C -- Carver, T J -- Cherevach, I -- Chillingworth, T -- Clark, T G -- Galinski, M R -- Hall, N -- Harper, D -- Harris, D -- Hauser, H -- Ivens, A -- Janssen, C S -- Keane, T -- Larke, N -- Lapp, S -- Marti, M -- Moule, S -- Meyer, I M -- Ormond, D -- Peters, N -- Sanders, M -- Sanders, S -- Sargeant, T J -- Simmonds, M -- Smith, F -- Squares, R -- Thurston, S -- Tivey, A R -- Walker, D -- White, B -- Zuiderwijk, E -- Churcher, C -- Quail, M A -- Cowman, A F -- Turner, C M R -- Rajandream, M A -- Kocken, C H M -- Thomas, A W -- Newbold, C I -- Barrell, B G -- Berriman, M -- 085775/Wellcome Trust/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2008 Oct 9;455(7214):799-803. doi: 10.1038/nature07306.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK. ap2@sanger.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18843368" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigens, CD/chemistry/genetics ; Chromosomes/genetics ; Conserved Sequence ; Genes, Protozoan/genetics ; Genome, Protozoan/*genetics ; *Genomics ; Humans ; Macaca mulatta/*parasitology ; Malaria/*parasitology ; Molecular Sequence Data ; Plasmodium knowlesi/classification/*genetics/physiology ; Protein Structure, Tertiary ; Protozoan Proteins/chemistry/genetics ; Sequence Analysis, DNA ; Telomere/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2002-05-23
    Description: Mechanical and thermal cues stimulate a specialized group of sensory neurons that terminate in the skin. Three members of the transient receptor potential (TRP) family of channels are expressed in subsets of these neurons and are activated at distinct physiological temperatures. Here, we describe the cloning and characterization of a novel thermosensitive TRP channel. TRPV3 has a unique threshold: It is activated at innocuous (warm) temperatures and shows an increased response at noxious temperatures. TRPV3 is specifically expressed in keratinocytes; hence, skin cells are capable of detecting heat via molecules similar to those in heat-sensing neurons.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peier, Andrea M -- Reeve, Alison J -- Andersson, David A -- Moqrich, Aziz -- Earley, Taryn J -- Hergarden, Anne C -- Story, Gina M -- Colley, Sian -- Hogenesch, John B -- McIntyre, Peter -- Bevan, Stuart -- Patapoutian, Ardem -- New York, N.Y. -- Science. 2002 Jun 14;296(5575):2046-9. Epub 2002 May 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12016205" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Animals, Newborn ; Blotting, Northern ; CHO Cells ; Capsaicin/*analogs & derivatives/pharmacology ; *Cation Transport Proteins ; Cell Line ; Cells, Cultured ; Cloning, Molecular ; Cricetinae ; Epidermis/cytology/innervation/metabolism ; Ganglia, Spinal/metabolism ; *Hot Temperature ; Humans ; In Situ Hybridization ; Ion Channels/chemistry/genetics/*metabolism ; Keratinocytes/*metabolism ; Membrane Potentials ; Mice ; Molecular Sequence Data ; Nerve Endings/physiology ; Neurons/physiology ; Patch-Clamp Techniques ; RNA, Messenger/genetics/metabolism ; Ruthenium Red/pharmacology ; Signal Transduction ; Spinal Cord/metabolism ; TRPV Cation Channels ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1999-07-20
    Description: A vertebrate securin (vSecurin) was identified on the basis of its biochemical analogy to the Pds1p protein of budding yeast and the Cut2p protein of fission yeast. The vSecurin protein bound to a vertebrate homolog of yeast separins Esp1p and Cut1p and was degraded by proteolysis mediated by an anaphase-promoting complex in a manner dependent on a destruction motif. Furthermore, expression of a stable Xenopus securin mutant protein blocked sister-chromatid separation but did not block the embryonic cell cycle. The vSecurin proteins share extensive sequence similarity with each other but show no sequence similarity to either of their yeast counterparts. Human securin is identical to the product of the gene called pituitary tumor-transforming gene (PTTG), which is overexpressed in some tumors and exhibits transforming activity in NIH 3T3 cells. The oncogenic nature of increased expression of vSecurin may result from chromosome gain or loss, produced by errors in chromatid separation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zou, H -- McGarry, T J -- Bernal, T -- Kirschner, M W -- GM26875/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Jul 16;285(5426):418-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10411507" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Amino Acid Sequence ; *Anaphase ; Anaphase-Promoting Complex-Cyclosome ; Animals ; CDC2 Protein Kinase/metabolism ; Cell Cycle Proteins/chemistry/metabolism ; *Cell Transformation, Neoplastic ; Chromatids/*physiology ; Conserved Sequence ; Cyclin B/metabolism ; Cyclin B1 ; *Endopeptidases ; Fungal Proteins/chemistry/metabolism ; HeLa Cells ; Humans ; Ligases/metabolism ; Mice ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Neoplasm Proteins/chemistry/genetics/*metabolism ; Neoplasms/etiology ; Nuclear Proteins/chemistry/metabolism ; Oncogene Proteins/chemistry/genetics/*metabolism ; Oncogenes ; *Saccharomyces cerevisiae Proteins ; *Schizosaccharomyces pombe Proteins ; Securin ; Separase ; Spindle Apparatus/metabolism ; *Ubiquitin-Protein Ligase Complexes ; Ubiquitin-Protein Ligases ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2002-04-20
    Description: Cadherins are transmembrane proteins that mediate adhesion between cells in the solid tissues of animals. Here we present the 3.1 angstrom resolution crystal structure of the whole, functional extracellular domain from C-cadherin, a representative "classical" cadherin. The structure suggests a molecular mechanism for adhesion between cells by classical cadherins, and it provides a new framework for understanding both cis (same cell) and trans (juxtaposed cell) cadherin interactions. The trans adhesive interface is a twofold symmetric interaction defined by a conserved tryptophan side chain at the membrane-distal end of a cadherin molecule from one cell, which inserts into a hydrophobic pocket at the membrane-distal end of a cadherin molecule from the opposing cell.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boggon, Titus J -- Murray, John -- Chappuis-Flament, Sophie -- Wong, Ellen -- Gumbiner, Barry M -- Shapiro, Lawrence -- NCI-P30-CA-08784/CI/NCPDCID CDC HHS/ -- R01 GM062270/GM/NIGMS NIH HHS/ -- R01 GM52717/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 May 17;296(5571):1308-13. Epub 2002 Apr 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11964443" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; CHO Cells ; Cadherins/*chemistry/genetics/metabolism ; *Cell Adhesion ; Cricetinae ; Crystallography, X-Ray ; Dimerization ; Glycosylation ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/chemistry ; Tryptophan/chemistry ; Xenopus Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1999-12-11
    Description: Tubby-like proteins (TULPs) are found in a broad range of multicellular organisms. In mammals, genetic mutation of tubby or other TULPs can result in one or more of three disease phenotypes: obesity (from which the name "tubby" is derived), retinal degeneration, and hearing loss. These disease phenotypes indicate a vital role for tubby proteins; however, no biochemical function has yet been ascribed to any member of this protein family. A structure-directed approach was employed to investigate the biological function of these proteins. The crystal structure of the core domain from mouse tubby was determined at a resolution of 1.9 angstroms. From primarily structural clues, experiments were devised, the results of which suggest that TULPs are a unique family of bipartite transcription factors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boggon, T J -- Shan, W S -- Santagata, S -- Myers, S C -- Shapiro, L -- New York, N.Y. -- Science. 1999 Dec 10;286(5447):2119-25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Biology Program, Department of Physiology and Biophysics, Ruttenberg Cancer Center, Mount Sinai School of Medicine of New York University, New York, NY 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10591637" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Alternative Splicing ; Amino Acid Sequence ; Animals ; Cell Line ; Cell Nucleus/chemistry ; Crystallography, X-Ray ; DNA/metabolism ; Eye Proteins/*chemistry/genetics/*metabolism ; Humans ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proteins/*chemistry/genetics/*metabolism ; Recombinant Proteins/chemistry/metabolism ; Sequence Alignment ; Transcription Factors/*chemistry/genetics/*metabolism ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2001-05-26
    Description: Dysfunction of the tubby protein results in maturity-onset obesity in mice. Tubby has been implicated as a transcription regulator, but details of the molecular mechanism underlying its function remain unclear. Here we show that tubby functions in signal transduction from heterotrimeric GTP-binding protein (G protein)-coupled receptors. Tubby localizes to the plasma membrane by binding phosphatidylinositol 4,5-bisphosphate through its carboxyl terminal "tubby domain." X-ray crystallography reveals the atomic-level basis of this interaction and implicates tubby domains as phosphorylated-phosphatidyl- inositol binding factors. Receptor-mediated activation of G protein alphaq (Galphaq) releases tubby from the plasma membrane through the action of phospholipase C-beta, triggering translocation of tubby to the cell nucleus. The localization of tubby-like protein 3 (TULP3) is similarly regulated. These data suggest that tubby proteins function as membrane-bound transcription regulators that translocate to the nucleus in response to phosphoinositide hydrolysis, providing a direct link between G-protein signaling and the regulation of gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Santagata, S -- Boggon, T J -- Baird, C L -- Gomez, C A -- Zhao, J -- Shan, W S -- Myszka, D G -- Shapiro, L -- New York, N.Y. -- Science. 2001 Jun 15;292(5524):2041-50. Epub 2001 May 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ruttenberg Cancer Center, Structural Biology Program, Department of Physiology and Biophysics, Mount Sinai School of Medicine of New York University, 1425 Madison Avenue New York, NY 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11375483" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; Animals ; Cell Membrane/metabolism ; Cell Nucleus/*metabolism ; Cells, Cultured ; Crystallography, X-Ray ; GTP-Binding Protein alpha Subunits, Gq-G11 ; Gene Expression Regulation ; Heterotrimeric GTP-Binding Proteins/*metabolism ; Humans ; Isoenzymes/*metabolism ; Membrane Lipids/metabolism ; Mice ; Models, Biological ; Molecular Sequence Data ; Nuclear Localization Signals ; Obesity/genetics/metabolism ; Phosphatidylinositol 4,5-Diphosphate/*metabolism ; Phosphatidylinositol Phosphates/metabolism ; Phospholipase C beta ; Phosphorylation ; Protein Structure, Tertiary ; Proteins/chemistry/genetics/*metabolism ; Receptor, Serotonin, 5-HT2C ; Receptors, Muscarinic/metabolism ; Receptors, Serotonin/metabolism ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; Transcription Factors/chemistry/genetics/*metabolism ; Type C Phospholipases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2001-03-07
    Description: The ability of intestinal mucosa to absorb dietary ferric iron is attributed to the presence of a brush-border membrane reductase activity that displays adaptive responses to iron status. We have isolated a complementary DNA, Dcytb (for duodenal cytochrome b), which encoded a putative plasma membrane di-heme protein in mouse duodenal mucosa. Dcytb shared between 45 and 50% similarity to the cytochrome b561 family of plasma membrane reductases, was highly expressed in the brush-border membrane of duodenal enterocytes, and induced ferric reductase activity when expressed in Xenopus oocytes and cultured cells. Duodenal expression levels of Dcytb messenger RNA and protein were regulated by changes in physiological modulators of iron absorption. Thus, Dcytb provides an important element in the iron absorption pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McKie, A T -- Barrow, D -- Latunde-Dada, G O -- Rolfs, A -- Sager, G -- Mudaly, E -- Mudaly, M -- Richardson, C -- Barlow, D -- Bomford, A -- Peters, T J -- Raja, K B -- Shirali, S -- Hediger, M A -- Farzaneh, F -- Simpson, R J -- New York, N.Y. -- Science. 2001 Mar 2;291(5509):1755-9. Epub 2001 Feb 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Medicine, Guy's, King's and St. Thomas' School of Medicine, King's College London, Rayne Institute, Denmark Hill Campus, 123 Coldharbour Lane, London SE5 9NU, UK. andrew.t.mckie@kcl.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11230685" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Anemia/enzymology ; Animals ; Anoxia ; Cell Line ; Cloning, Molecular ; Cytochrome b Group/chemistry/genetics/*metabolism ; DNA, Complementary ; Duodenum/enzymology/*metabolism ; Enterocytes/enzymology/metabolism ; Enzyme Induction ; Ferric Compounds/*metabolism ; *Intestinal Absorption ; Intestinal Mucosa/enzymology/*metabolism ; Iron, Dietary/administration & dosage/*metabolism ; Male ; Mice ; Microvilli/enzymology/metabolism ; Molecular Sequence Data ; Nitroblue Tetrazolium/metabolism ; Oocytes ; Oxidation-Reduction ; Oxidoreductases/chemistry/genetics/*metabolism ; RNA, Messenger/genetics/metabolism ; Tetrazolium Salts/metabolism ; Thiazoles/metabolism ; *Transfection ; Up-Regulation ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1997-07-04
    Description: Angiogenesis is thought to depend on a precise balance of positive and negative regulation. Angiopoietin-1 (Ang1) is an angiogenic factor that signals through the endothelial cell-specific Tie2 receptor tyrosine kinase. Like vascular endothelial growth factor, Ang1 is essential for normal vascular development in the mouse. An Ang1 relative, termed angiopoietin-2 (Ang2), was identified by homology screening and shown to be a naturally occurring antagonist for Ang1 and Tie2. Transgenic overexpression of Ang2 disrupts blood vessel formation in the mouse embryo. In adult mice and humans, Ang2 is expressed only at sites of vascular remodeling. Natural antagonists for vertebrate receptor tyrosine kinases are atypical; thus, the discovery of a negative regulator acting on Tie2 emphasizes the need for exquisite regulation of this angiogenic receptor system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maisonpierre, P C -- Suri, C -- Jones, P F -- Bartunkova, S -- Wiegand, S J -- Radziejewski, C -- Compton, D -- McClain, J -- Aldrich, T H -- Papadopoulos, N -- Daly, T J -- Davis, S -- Sato, T N -- Yancopoulos, G D -- New York, N.Y. -- Science. 1997 Jul 4;277(5322):55-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9204896" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Angiopoietin-1 ; Angiopoietin-2 ; Animals ; Blood Vessels/embryology/*metabolism ; Cells, Cultured ; Cloning, Molecular ; Embryo, Mammalian/metabolism ; Endothelial Growth Factors/genetics/metabolism ; Endothelium, Vascular/*cytology/metabolism ; Female ; Humans ; Ligands ; Lymphokines/genetics/metabolism ; Membrane Glycoproteins/antagonists & inhibitors/metabolism ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; *Neovascularization, Physiologic ; Phosphorylation ; Proteins/chemistry/*metabolism ; Rats ; Rats, Sprague-Dawley ; Receptor Protein-Tyrosine Kinases/*antagonists & inhibitors/metabolism ; Receptor, TIE-2 ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Vascular Endothelial Growth Factor A ; Vascular Endothelial Growth Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1998-06-06
    Description: Single-nucleotide polymorphisms (SNPs) are the most frequent type of variation in the human genome, and they provide powerful tools for a variety of medical genetic studies. In a large-scale survey for SNPs, 2.3 megabases of human genomic DNA was examined by a combination of gel-based sequencing and high-density variation-detection DNA chips. A total of 3241 candidate SNPs were identified. A genetic map was constructed showing the location of 2227 of these SNPs. Prototype genotyping chips were developed that allow simultaneous genotyping of 500 SNPs. The results provide a characterization of human diversity at the nucleotide level and demonstrate the feasibility of large-scale identification of human SNPs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, D G -- Fan, J B -- Siao, C J -- Berno, A -- Young, P -- Sapolsky, R -- Ghandour, G -- Perkins, N -- Winchester, E -- Spencer, J -- Kruglyak, L -- Stein, L -- Hsie, L -- Topaloglou, T -- Hubbell, E -- Robinson, E -- Mittmann, M -- Morris, M S -- Shen, N -- Kilburn, D -- Rioux, J -- Nusbaum, C -- Rozen, S -- Hudson, T J -- Lipshutz, R -- Chee, M -- Lander, E S -- HG00098/HG/NHGRI NIH HHS/ -- HG01323/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 1998 May 15;280(5366):1077-82.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9582121" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Alleles ; Chromosome Mapping/*methods ; DNA, Complementary ; Databases, Factual ; Deoxyribonucleotides/*genetics ; Dinucleoside Phosphates ; Gene Expression ; Genetic Markers ; *Genetic Techniques ; Genetic Variation ; *Genome, Human ; *Genotype ; Heterozygote ; Homozygote ; Humans ; Molecular Sequence Data ; Nucleic Acid Hybridization ; Polymerase Chain Reaction ; *Polymorphism, Genetic ; Reproducibility of Results ; Sequence Analysis, DNA ; Sequence Tagged Sites
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...