ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-29
    Description: We present results from a KAO survey of fine-structure lines observed in 23 infrared-luminous galaxies. One or more of the following lines was observed and/or detected in each galaxy: (S III) 19, 33 microns, (Ne V) 24 microns, (O IV) 26 microns, (Fe II) 26 microns, (Si II) 35 microns, (O III) 52, 88 microns, (0 I) 63, 146 microns, (N III) 57 micro ns, (N II) 122, 205 microns, (C II) 158 microns. The galaxies span a wide range of morphologies (irregular to grand design), have varying metallicities, and include mergers, AGN's, and starburst systems. The observations were made beginning in 1988 using the facility Cryogenic Grating Spectrometer onboard the KAO at a typical resolution of approximately 60-140 km/s and with a 30-44 deg beam. We interpret the (C II) and (O I) fluxes, along with previous measurements of the IR continuum fluxes, in the context of photo dissociation region (PDR) models (Tielens & Hollenbach 1985; Wolfire et al. 1990). With these models, we obtain estimates of the typical interstellar UV fields incident on the line emitting regions (102-104 times the local interstellar radiation field) and the total masses (10(exp 7)-10(exp 8) Solar Mass), densities (10(exp 3)-10(exp 4)/cu cm), and temperatures (100-250 K) of the warm atomic gas. The (O III) (52/88) and (S III) (33/19) line flux ratios constrain the range of electron densities and pressures found within the ionized regions. The (O III) and (S III) lines also provide estimates of the effective temperature of the ionizing stars and elemental abundances within the ionized regions of these galactic nuclei. Our measurements imply typical gas pressures of nT approximately 5 x 10(exp 6)/cu cm K and typical upper mass cutoffs of 25-35 Solar Mass. The low-metallicity systems show high (C II)/CO and (O I)/CO flux ratios, 3-5 times the Milky Way value, indicating that they contain a larger fraction of photodissociated gas relative to the molecular material.
    Keywords: ASTRONOMY
    Type: Astronomical Society of the Pacific, Airborne Astronomy Symposium on the Galactic Ecosystem: From Gas to Stars to Dust, Volume 73; p 151-158
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-29
    Description: A significant fraction of a star's initial mass is lost while it is on the Asymptotic Giant Branch (AGB). Mass loss rates range from 10(exp -7) solar mass/yr for early AGB stars to a few 10(exp -4) solar mass/yr for stars at the tip of the AGB. Dust grains condense from the outflow as the gas expands and form a dust shell around the central star. A superwind (approximately 10(exp -4) to 10(exp -3) solar mass/yr) is thought to terminate the AGB phase. In the post-AGB phase, the star evolves to a higher effective temperature, the mass loss decreases (approximately 10(exp -8) solar mass/yr), but the wind velocity increases (approximately 1000 km/s). During this evolution, dust and gas are exposed to an increasingly harsher radiation field and when T(sub eff) reaches about 30,000 K, the nebula is ionized and becomes a planetary nebula (PN). Photons from the central star can create a photodissociation region (PDR) in the expanding superwind. Gas can be heated through the photoelectric effect working on small grains and polycyclic aromatic hydrocarbons (PAH's). This gas can cool via the atomic fine structure lines of O I (63 microns and 145 microns) and C II (158 microns), as well as the rotational lines of CO. In the post-AGB phase, the fast wind from the central star will interact with the material ejected during the AGB phase. The shock caused by this interaction will dissociate and heat the gas. This warm gas will cool through atomic fine structure lines of O I and the rotational lines of (newly formed) CO.
    Keywords: ASTRONOMY
    Type: Astronomical Society of the Pacific, Airborne Astronomy Symposium on the Galactic Ecosystem: From Gas to Stars to Dust, Volume 73; p 429-432
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: We have used the Kuiper Airborne Observatory (KAO) and the Anglo-Australian Telescope (AAT) to investigate the nature of the filamentary radio emission from the Galactic center region. KAO observations of the FIR line and continuum emission from the radio peak G0.095+0.012 and the E2 thermal radio filament northeast of the Galactic center can be produced by numerous nearby stars with T(sub eff) approx. 35,000 K; these can account for both the FIR luminosity and the excitation of the gas. Much of the FIR continuum and most of the strong (Si II) (34.8 micron) line emission are probably produced in the ionized gas of the filament. The FIR (O III) 52 and 88 micron lines imply an electron density of a few hundred; when compared with the radio emission measure, this implies the filament is roughly tubular or somewhat flattened in the plane of the sky. The (O III) and (S III) lines show higher excitation associated with the filament, and suggest that exciting stars may be located within the filaments and/or southeast of the E2 filament. AAT observations in the near infrared (NIR) in fact reveal a nearby cluster of hot stars southeast of the E2 filament. Additional hot stars, not identifiable from their NIR spectra, are likely to be present. These stars and those in the cluster can plausibly produce the observed radio and FIR emission in the region. The morphology of the filament is not explained by existing information however.
    Keywords: ASTRONOMY
    Type: Astronomical Society of the Pacific, Airborne Astronomy Symposium on the Galactic Ecosystem: From Gas to Stars to Dust, Volume 73; p 489-498
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Far-infrared lines of (N III) (57 microns), (O III) (52, 88 microns), (Ne III) (36 microns), and (S III) (19, 33 microns) have been measured in the H II regions G1.13 - 0.11, W31B, G23.95 + 0.15, G25.38 - 0.18, G29.96 - 0.02, W43, W51e, S156, S158, NGC 3576, NGC 3603, and G298.22-0.34. These observations were made with the facility Cryogenic Grating Spectrometer on the Kuiper Airborne Observatory to examine variations in abundances throughout the Galaxy. Previously published observations of G0.095 + 0.012, G333.60 - 0.21, G45.13 + 0.14A, K3-50, and M17 are also discussed. The giant H II region 30 Doradus in the Large Magellanic Cloud (LMC) was observed for comparison. Fluxes for (Ne II) (12.8 microns), (S IV) (10.5 microns), and the radio free-free continuum were collected from the literature for those sources. Electron densities were estimated from FIR line-pair ratios, and ionic abundances were estimated from the FIR line and radio fluxes. The excitation was estimated from the O(2+)/S(2+) ratio. Corrections for unseen ionization stages were calculated with the use of constnat-density H II region models. The validity and range of applicability of such semiempirical ionization correction schemes are discussed. The abundances with respect to hydrogen exhibit gradients with R(sub G) comparable to those previously measured for our Galaxy and for other galaxies. The overall gradients are d (log N/H)/dR = -0.10 +/- 0.02 dex/kpc, d(log Ne/H)/dR = -0.08 +/- 0.02 dex/kpc and d(log S/H)/dR = 0.07 +/- 0.02 dex/kpc. Compared to the Orion Nebula, the intermediate R(sub G) H II regions with 6 is less than R(sub G) is less than 11 kpc have similar or lower S/H and N/O ratios. The N/O ratios in the inner Galaxy are more than twice those observed in the Orion Nebula and intermediate R(sub G) H II regions. In fact, all the abundance ratios are as well or better fitted by a step fit with two levels than by a linear gradient. As has been noted in previous studies, the N/O ratio estimated from infrared observations of the doubly ionized N and O lines in H II regions is larger than the ratio estimated from optical observations of the singly ionized N and O lines. The Ne(2+)/O(2+) ratio is observed to be essentially constant over a wide range of excitation. This contradicts predictions of model H II regions calculated with the use of Local Thermodynamic Equilibrium (LTE) model stellar atmospheres. We conclude that these stellar atmospheres significantly underestimate the actual emergent fluxes for energies greater than 41 eV.
    Keywords: ASTRONOMY
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 444; 2; p. 721-738
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...