ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: The first two years of Cosmic Background Explorer (COBE) Differential Microwave Radiometers (DMR) observations of the cosmic microwave background (CMB) anisotropy are analyzed and compared with our previously published first year results. The results are consistent, but the addition of the second year of data increases the precision and accuracy detected CMB temperature fluctuations. The 2 yr 53 GHz data are characterized by rms temperature fluctuations of (delta-T)(sub rms) (7 deg) = 44 +/- 7 micro-K and (delta-T)(sub rms) (10 deg) = 30.5 +/- 2.7 micro-K at 7 deg and 10 deg angular resolution, respectively. The 53 x 90 GHz cross-correlation amplitude at zero lag is C(0)(sup 1/2) = 36 +/- 5 micro-K (68% CL) for the unsmoothed (7 deg resolution) DMR data. We perform a likelihood analysis of the cross-correlation function, with Monte Carlo simulations to infer biases of the method, for a power-law model of initial density fluctuations, P(k) proportional to R(exp n). The Monte Carlo simulations indicate that derived estimates of n are biased by +0.11 +/- 0.01, while the subset of simulations with a low quadrupole (as observed) indicate a bias of +0.31+/- 0.04. Derived values for 68% confidence intervals are given corrected (and not corrected) for our estimated biases. Including the quadrupole anisotropy, the most likely quadrupole-normalized amplitude is Q(sub rms-PS) = 14.3(sup + 5.2 sub -3.3) micro-K (12.8(sup + 5.2 sub -3.3) micro-K0 with a spectral index n = 1.42(sup + 0.49 sub -0.55)(n = 1.53(sup + 0.49 sub -0.55). With n fixed to 1.0 the most likely amplitude is 18.2 +/- 11.5 micro-K (17.4 +/- 1.5 micro-K). The marginal likelihood of n is 1.42 +/- 0.37 (1.53 +/- 0.37). Excluding the quadrupole anisotropy, the most likely quadrupole-normalized amplitude is Q(sub rms-PS) = 17.4(sup + 7.5 sub -5.2) micro-K (15.8(sup + 7.5 sub -5.2) micro-K) with a spectral index n = 1.11(sup + 0.60 sub -0.55) (n = 1.22(sup + 0.60 sub -0.55). With n fixed to 1.0 the most likely amplitude is 18.6 +/- 1.6 micro-K (18.2 +/- 1.6 micro-K). The marginal likelihood of n is 1.11 +/- 0.40 (1.22 +/- 0.40). Our best estimate of the dipole from the 2 yr DMR data is 3.363 +/- 0.024 mK toward Galactic coordinates (l, b) = (264.4 deg +/- 0.2 deg, 48.1 deg +/- 0.4 deg), and our best estimate of the rms quadrupole amplitude in our sky is 6 +/- 3 micro-K (68% CL).
    Keywords: ASTRONOMY
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 436; 2; p. 423-442
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: The angular power spectrum estimator developed by Peebles (1973) and Hauser & Peebles (1973) has been modified and applied to the 2 yr maps produced by the Cosmic Background Explorer Satellite Differential Microwave Radiometer (COBE DMR)). The power spectrum of the real sky has been compared to the power spectra of a large number of simulated random skies produced with noise equal to the observed noise and primordial density fluctuation power spectra of power-law form, with P(k) proportional to k(exp n). Within the limited range of spatial scales covered by the COBE DMR, corresponding to spherical harmonic indices 3 less than or = l is less than or approximately = 30, the best-fitting value of the spectral index is n = 1.25(sup +0.39 sub -0.44) with the Harrisson-Zel'dovich value n = 1 approximately 0.5 sigma below the best fit. For 3 less than or = l less than or approximately = 19, the best fit is n = 1.46(sup +0.39 sub -0.44). Comparing the COBE DMR delta-T/T at small l to the delta-T/T at l approximately = 50 from degree scale anisotropy experiments gives a smaller range of acceptable spectral indices which includes n = 1.
    Keywords: ASTRONOMY
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 436; 2; p. 443-451
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-19
    Description: Preliminary but precise micowave maps are presented of the sky, and thus of the early universe, derived as the first results from the Differential Microwave Radiometers experiment aboard COBE. The dipole anisotropy attributed to the motion of the solar system with respect to the CMB reference frame shows strongly in all six sky maps and is consistent with a Doppler-shifted thermal spectrum. The best-fitted dipole has amplitude 3.3 + or - 0.2 mK in the direction (alpha, delta) = 11.2 h + or - 0.2 h, -7 deg + or - 2 deg (J2000) or (l,b) = 265 deg + or - 2 deg, 48 deg + or - 2 deg. There is no clear evidence in the maps for any other large angular-scale feature. Limits on Delta T/T0 of 3 x 10 to the -5th (T0 = 2.735 K), 4 x 10 to the -5th, and 4 x 10 to the -5th are found for the rms quadrupole amplitude, monochromatic fluctuations, and Gaussian fluctuations, respectively. These measurements place the most severe constraints to date on many potential physical processes in the early universe.
    Keywords: SPACE RADIATION
    Type: Astrophysical Journal, Part 2 - Letters (ISSN 0004-637X); 371; L1-L5
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-16
    Description: Data from two flights of a new superconducting magnetic spectrometer are reported. This instrument was capable of a direct matter-antimatter separation in the cosmic rays. Antimatter events would appear in the spectrometer as trajectories which curve in the opposite direction to common matter, because of their negative charge. A brief description of the equipment and of the characteristics of the instrument is presented, along with the data processing techniques used. A new upper limit on the amount of antimatter in primary cosmic rays has been established. The limits are considerably lower than those for any previous experiment.
    Keywords: SPACE RADIATION
    Type: Nature; 236; Apr. 14
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-17
    Description: Anisotropy has been detected in the cosmic blackbody radiation with a 33-GHz (0.9 cm) twin-antenna Dicke radiometer flown to an altitude of 20 km aboard a U-2 aircraft. In data distributed over two-thirds of the Northern Hemisphere, an anisotropy is observed, which is well fitted by a first-order spherical harmonic with an amplitude of (3.5 plus or minus 0.6) x 10 to the -3rd deg K, and direction 11.0 plus or minus 0.6 h right ascension and 6 plus or minus 10 deg declination. This observation is readily interpreted as due to motion of the earth relative to the radiation with a velocity of 390 plus or minus 60 km/sec.
    Keywords: SPACE RADIATION
    Type: Physical Review Letters; 39; Oct. 3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-17
    Keywords: SPACE RADIATION
    Type: Res. in the Space Sci., vol. 1, no. 3,; 4 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-01-25
    Description: The purpose of the Differential Microwave Radiometer (DMR) experiment on the Cosmic Background Explorer (COBE) satellite is to make whole-sky maps, at frequencies of 31.5, 53, and 90 GHz, of any departures of the Cosmic Microwave Background (CMB) from its mean value of 2.735 K. An elaborate software system is necessary to calibrate and invert the differential measurements, so as to make sky maps free from large scale systematic errors to levels less than a millionth of the CMB.
    Keywords: ASTRONOMY
    Type: Goddard Visiting Scientist Program for the Space and Earth Sciences Directorate; 1 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-06-28
    Description: The technique and results of a measurement of the linear polarization of the cosmic background radiation at a wavelength of 9 mm are discussed. Data taken between 1978 May and 1980 February from both the Northern Hemisphere (Berkeley latitude 38 deg N) and the Southern Hemisphere (Lima latitude 12 deg S) over 11 declinations from -37 to +63 deg show the radiation to be essentially unpolarized over all areas surveyed. Fitting all data gives the 95% confidence level limit on a linearly polarized component of 0.3 mK for spherical harmonics through third order. A fit of all data to the anisotropic axisymmetric model of Rees (1968) yields a 95% confidence level limit of 0.15 mK for the magnitude of the polarized component. Constraints on various cosmological models are discussed in light of these limits.
    Keywords: ASTRONOMY
    Type: Astrophysical Journal; vol. 245
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: Results of an extended series of airborne measurements of large-angular-scale anisotropy in the 3-K cosmic background radiation are reported. A dual-antenna microwave radiometer operating at 33 GHz flown aboard a U-2 aircraft to 20-km altitude on 11 flights between December 1976 and May 1978 measured differential intensity between pairs of directions distributed over most of the Northern Hemisphere. Measurements show clear evidence of anisotropy that is readily interpreted as due to the solar motion relative to the sources of the radiation. The anisotropy is well fitted by a first order spherical harmonic of amplitude 3.6 + or - 0.5 mK, corresponding to a velocity of 360 + or - 50 km/s toward the direction 11.2 + or - 0.5 hours of right ascension and 19 deg + or - 8 deg declination.
    Keywords: SPACE RADIATION
    Type: Astrophysical Journal; vol. 244
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-27
    Description: A recent airborne measurement of the large-angular-scale anisotropy in the cosmic background radiation from the Southern Hemisphere (Lima, Peru) is in essential agreement with previous measurements from the northern hemisphere. The net anisotropy from the combined data can be described by a first-order spherical harmonic (Doppler) anisotropy of amplitude 3.1 plus or minus 0.4 mK with a quadrupole component of less than 1 mK. Additional ground-based measurements of the linear polarization yield an upper limit of l mK, or one part in 3000, at 95% confidence level for the amplitudes of any spherical harmonic through third order.
    Keywords: SPACE RADIATION
    Type: Astrophysical Journal; vol. 234
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...