ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-28
    Description: During the all sky survey (May 1991 - Nov. 1992) of the Compton Gamma Ray Observatory the Vela pulsar PSR0833-45 was in the field of view of the Energetic Gamma Ray Experiment Telescope (EGRET) in ten separate viewing periods. The pulsar was detected in each one. The average intensity from 100 MeV to 2 GeV was (7.8 +/- 1.0) x 10 (exp -6) photons cm(exp -2) s(exp -1), which indicates that the pulsar in the years 1991/92 was in a state comparable to the low fluxes observed in 1977-1980. No significant changes in intensity were detected during the EGRET observations. The total spectrum of PSR0833-45 measured by EGRET can be described by a power law with index -(1.70 +/- 0.02) over the range 30 MeV to 2 GeV. The extrapolation of this spectrum into the 3 to 30 MeV range agrees with the observations by COMPTEL. Above 2 to 4 GeV EGRET detects a strong spectral break. The lightcurves obtained show a familar structure in the phase histogram: two peaks separated by 0.424 +/- 0.002 in phase with considerable emission in the phase interval between the peaks. The first gamma ray peak maximum trails the single radio peak maximum by 10.54 +/- 0.09 ms (= 0.118 +/- 0.001 in phase). The widths of the emission peaks (FWHM) are 2.7 ms for the first peak (0.03 phase) and 4.1 ms for the second peak (0.05 phase). The widths are approximately constant below a GeV, but show a tendency to become narrower at higher energies. On Jul. 20 1991 a glitch of the Vela period was registered in monitor radio observations. No significant differences between the pre- and post-glitch gamma ray lightcurves were found. The statistics available for the Vela observations allow for a division of the lightcurve into eight phase intervals. The emission peak cores (central FWHM) with leading and trailing wings and two interval regions were defined and spectra were derived for all parts of the lightcurve. The energy spectra for the eight phase intervals show significant differences: the first peak (approximately E(exp -1.81 +/- 0.04)) is somewhat softer than the second peak (approximately E(exp -1.71 +/- 0.03)); the wings attached to each peak show softer spectra than the code of the peaks; the interval emission has the hardest spectrum (approximately E(exp -1.52 +/- 0.03)).
    Keywords: ASTRONOMY
    Type: NASA-CR-197959 , NAS 1.26:197959 , MPE-PREPRINT-289
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: During the all sky survey (May 1991 to November 1992) of the Compton Gamma Ray Observatory, the Vela pulsar PSR0833-45 was in the field of view of the Energetic Gamma Ray Experiment Telescope (EGRET) in ten separate viewing periods. The pulsar was detected in each one. The average intensity from 100 MeV to 2GeV was (7.8 +/- 1.0) x 10(exp -6) photons /sq cm/s, which indicates that the pulsar in the years 1991/92 was in a state comparable to the low fluxes observed in 1977-1980. No significant changes in intensity were detected during the EGRET observations. The total spectrum of PSR0833-45 measured by EGRET can be described by a power-law with index -1.70 +/- 0.02 over the range 30 MeV to 2 GeV. The extrapolation of this spectrum into the 3-30 MeV range agrees with the observations by COMPTEL. Above 2-4 GeV EGRET detects a strong spectral break. The lightcurves obtained show a familiar structure in the phase histogram: two peaks separated by 0.424 +/- 0.002 in phase with considerable emission in the phase interval between the peaks. The first gamma ray peak maximum trails the single radio peak maximum by 10.54 +/- 0.09 ms (= 0.118 +/- 0.001 in phase). The widths of the emission peaks (FWHM) are 2.7 ms for the first peak (0.03 phase) and 4.1 ms for the second peak (0.05 phase). The widths are approximately constant below a GeV, but show a tendency to become narrower at higher energies. The statistics available for the Vela observations allow for a division of the lightcurve into eight phase intervals. The emission peak cores (central FWHM) with leading and trailing wings and two interval regions were defined and spectra were derived for all parts of the lightcurve. The energy spectra for the eight phase intervals show significant differences: the first peak (approximately E(exp -1.81 +/- 0.04)) is somewhat softer than the second peak (approximately E(exp -1.71 +/- 0.03)); the wings attached to each peak show softer spectra than the core of the peaks; the interval emission has the hardest spectrum (approximately E(exp -1.52 +/- 0.03)).
    Keywords: ASTRONOMY
    Type: Astronomy and Astrophysics (ISSN 0004-6361); 289; 3; p. 855-867
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: As part of its ongoing survey of the high-energy gamma-ray sky, the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory has searched for emission from spin-powered pulsars, five of which have now been detected in the energy range 30 MeV less than or = E less than or = 20 GeV. A systematic study of the all-sky survey has found no additional pulsed gamma-ray sources. The pulsar detections, coupled with the upper limits on pulsed gamma radiation from other radio pulsars, indicate that the simplest models of gamma-ray pulsars are incomplete.
    Keywords: ASTRONOMY
    Type: Astrophysical Journal, Part 1 (ISSN 0004-367X); 436; 1; p. 229-238
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: We report upper limits to the high-energy gamma-ray emission from the millisecond pulsars (MSPs) in a number of globular clusters. The observations were done as part of an all-sky survey by the energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (CGRO) during Phase I of the CGRO mission (1991 June to 1992 November). Several theoretical models suggest that MSPs may be sources of high-energy gamma radiation emitted either as primary radiation from the pulsar magnetosphere or as secondary radiation generated by conversion into photons of a substantial part of the relativistic e(+/-) pair wind expected to flow from the pulsar. To date, no high-energy emission has been detected from an individual MSP. However, a large number of MSPs are expected in globular cluster cores where the formation rate of accreting binary systems is high. Model predictions of the total number of pulsars range in the hundreds for some clusters. These expectations have been reinforced by recent discoveries of a substantial number of radio MSPs in several clusters; for example, 11 have been found in 47 Tucanae (Manchester et al.). The EGRET observations have been used to obtain upper limits for the efficiency eta of conversion of MSP spin-down power into hard gamma rays. The upper limits are also compared with the gamma-ray fluxes predicted from theoretical models of pulsar wind emission (Tavani). The EGRET limits put significant constraints on either the emission models or the number of pulsars in the globular clusters.
    Keywords: ASTRONOMY
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 435; 1; p. 218-224
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: In this catalog the results related to high-energy gamma-ray sources obtained from the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory are summarized for the period from 1991 April 22 to 1992 November 17, called phase 1. This phase of the Compton Observatory mission was devoted to an all-sky survey. Tables are included for the following EGRET results: solar flares with detected gamma radiation; pulsars; sources with absolute value of b is less than 10 deg, gamma-ray bursts; normal galaxies; clusters of galaxies; positive detections of radio-loud quasars and BL Lac objects; marginal detections of radio-loud quasars and BL Lac objects; upper limits for radio-loud quasars and BL Lac objects; upper limits for Seyfert galaxies and selected radio-quiet quasars, and other sources with absolute value of b is greater than or equal to 10 deg the Galactic plane. There is also a table relating the dates of the observations to the Compton Observatory viewing period numbers to assist in referencing the observations.
    Keywords: ASTRONOMY
    Type: The Astrophysical Journal (ISSN 0067-0049); 94; 2; p. 551-581
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: GRB110721A was observed by the Fermi Gamma-ray Space Telescope using its two instruments, the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM). The burst consisted of one major emission episode which lasted for approximately 24.5 s (in the GBM) and had a peak flux of (5.7 +/- 0.2) 10(exp -5) erg s(exp -1) cm(exp -2). The time-resolved emission spectrum is best modeled with a combination of a Band function and a blackbody spectrum. The peak energy of the Band component was initially 15 +/- 2 MeV, which is the highest value ever detected in a GRB. This measurement was made possible by combining GBM/BGO data with LAT Low Energy events to achieve continuous 10-100 MeV coverage. The peak energy later decreased as a power law in time with an index of -1.89 +/- 0.10. The temperature of the blackbody component also decreased, starting from approximately 80 keV, and the decay showed a significant break after approximately 2s. The spectrum provides strong constraints on the standard synchrotron model, indicating that alternative mechanisms may give rise to the emission at these energies.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN8389 , GSFC-E-DAA-TN9742 , The Astrophysical Journal Letters; 757; 2; L31
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: We have performed an analysis of the diffuse gamma-ray emission with the Fermi Large Area Telescope (LAT) in the Milky Way halo region, searching for a signal from dark matter annihilation or decay. In the absence of a robust dark matter signal, constraints are presented. We consider both gamma rays produced directly in the dark matter annihilation/decay and produced by inverse Compton scattering of the e+/e produced in the annihilation/decay. Conservative limits are derived requiring that the dark matter signal does not exceed the observed diffuse gamma-ray emission. A second set of more stringent limits is derived based on modeling the foreground astrophysical diffuse emission using the GALPROP code. Uncertainties in the height of the diffusive cosmic-ray halo, the distribution of the cosmic-ray sources in the Galaxy, the index of the injection cosmic-ray electron spectrum, and the column density of the interstellar gas are taken into account using a profile likelihood formalism, while the parameters governing the cosmic-ray propagation have been derived from fits to local cosmic-ray data. The resulting limits impact the range of particle masses over which dark matter thermal production in the early universe is possible, and challenge the interpretation of the PAMELA/Fermi-LAT cosmic ray anomalies as the annihilation of dark matter.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN8468 , The Astrophysical Journal; 761; 2; 91
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: We report the first hard X-ray observations with NuSTAR of the BL Lac-type blazar PKS2155-304, augmented with soft X-ray data from XMM-Newton and gamma-ray data from the Fermi Large Area Telescope, obtained in 2013April when the source was in a very low flux state. A joint NuSTAR and XMM spectrum, covering the energy range 0.5-60 keV, is best described by a model consisting of a log-parabola component with curvature Beta = -0.3(+0.2 -0.1) and a (local) photon index 3.04 +/- 0.15 at photon energy of 2 keV, and a hard power-law tail with photon index 2.2 +/- 0.4. The hard X-ray tail can be smoothly joined to the quasi-simultaneous gamma-ray spectrum by a synchrotron self-Compton component produced by an electron distribution with index p 2.2. Assuming that the power-law electron distribution extends down to gamma (sub min) = 1 and that there is one proton per electron, an unrealistically high total jet power of Lp approximately 10 (exp 47) erg s(sub -1) is inferred. This can be reduced by two orders of magnitude either by considering a significant presence of electron-positron pairs with lepton-to-proton ratio n(sub e+e-/n(sub p) approx. 30, or by introducing an additional, low-energy break in the electron energy distribution at the electron Lorentz factor gamma br1 approx. 100. In either case, the jet composition is expected to be strongly matter-dominated
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN47029 , The Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 831; 2; 142
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Pulsars are among the prime targets for the Large Area Telescope (LAT) aboard the recently launched Fermi observatory. The LAT will study the gamma-ray Universe between 20 MeV and 300 GeV with unprecedented detail. Increasing numbers of gamma-ray pulsars are being firmly identified, yet their emission mechanisms are far from being understood. To better investigate and exploit the tAT capabilities for pulsar science. a set of new detailed pulsar simulation tools have been developed within the LAT collaboration. The structure of the pulsar simulator package (PulsarSpeccrum) is presented here. Starting from photon distributions in energy and phase obtained from theoretical calculations or phenomenological considerations, gamma-rays are generated and their arrival times at the spacecraft are determined by taking Into account effects such as barycentric effects and timing noise. Pulsars in binary systems also can be simulated given orbital parameters. We present how simulations can be used for generating a realistic set of gamma rays as observed by the LAT, focusing on some case studies that show the performance of the LAT for pulsar observations.
    Keywords: Astrophysics
    Type: GSFC.JA.6890.2012 , Astroparticle Physics; 32; 1; 1-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The Crab pulsar and nebula were observed three times in 1991 April to June by the Energetic Gamma-Ray Experiment Telescope (EGRET) on the Compton Gamma-Ray Observatory (CGRO): April 23 to May 7, May 16 to 30, and June 8 to 15. The results of analysis of the gamma-ray emission in the energy range from 50 MeV to more than 10 GeV are reported. The observed gamma-ray light curve exhibits two peaks separated in phase by 0.40 +/- 0.02, consistent with previous observations. The total pulsed emission from the Crab pulsar is found to be well represented by a power-law spectrum, softer than the spectrum measured by COS B (Clear et al., 1987). The interpulse emission has a harder spectrum than either of the pulses. The evidence for pulsed emission above 5 GeV in the EGRET data is not conclusive. Unpulsed emission in the energy range 50 MeV to 5 GeV was detected, with an indication of a hardening of the unpulsed spectrum above about 1 GeV. There was a significant change in the light curve over the 2 months of these observations, although the shape of the spectrum remained constant.
    Keywords: ASTRONOMY
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 409; 2; p. 697-704.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...