ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-28
    Description: Simultaneous tracking of two spacecraft in orbit about a distant planet by two widely separated Earth-based radio antennas provides more-accurate positioning information than can be obtained by tracking each spacecraft separately. A demonstration of this tracking technique, referred to as same-beam interferometry (SBI), is currently being done using the Magellan and Pioneer 12 orbiters at Venus. Signals from both spacecraft fall within the same beamwidth of the Deep Space Station antennas. The plane-of-sky position difference between spacecraft is precisely determined by doubly differenced phase measurements. This radio metric measurement naturally complements line-of-sight Doppler. Data was first collected from Magellan and Pioneer 12 on August 11-12, 1990, shortly after Magellan was inserted into Venus orbit. Data were subsequently acquired in February and April 1991, providing a total of 34 hours of same-beam radio metric observables. Same-beam radio metric residuals have been analyzed and compared with model measurement error predictions. The predicted error is dominated by solar plasma fluctuations. The rms of the residuals is less than predicted by about 25 percent for 5-min averages. The shape of the spectrum computed from residuals is consistent with that derived from a model of solar plasma fluctuations. This data type can greatly aid navigation of a second spacecraft when the first is well-known in its orbit.
    Keywords: ASTRODYNAMICS
    Type: The Telecommunications and Data Acquisition; p 1-20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...