ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Artikel  (12)
  • Coral  (4)
  • AMOC  (3)
  • AAIW  (2)
  • Deglaciation  (2)
  • Indian monsoon  (2)
Sammlung
  • Artikel  (12)
Datenquelle
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 27 (2012): PA3231, doi:10.1029/2012PA002313.
    Beschreibung: Accurate low-latitude sea surface temperature (SST) records that predate the instrumental era are needed to put recent warming in the context of natural climate variability and to evaluate the persistence of lower frequency climate variability prior to the instrumental era and the possible influence of anthropogenic climate change on this variability. Here we present a 235-year-long SST reconstruction based on annual growth rates (linear extension) of three colonies of the Atlantic coral Siderastrea siderea sampled at two sites on the northeastern Yucatan Peninsula, Mexico, located within the Atlantic Warm Pool (AWP). AWP SSTs vary in concert the Atlantic Multidecadal Oscillation (AMO), a basin-wide, quasiperiodic (∼60–80 years) oscillation of North Atlantic SSTs. We demonstrate that the annual linear growth rates of all three coral colonies are significantly inversely correlated with SST. We calibrate annual linear growth rates to SST between 1900 and 1960 AD. The linear correlation coefficient over the calibration period is r = −0.77 and −0.66 over the instrumental record (1860–2008 AD). We apply our calibration to annual linear growth rates to extend the SST record to 1775 AD and show that multidecadal SST variability has been a persistent feature of the AWP, and likely, of the North Atlantic over this time period. Our results imply that tropical Atlantic SSTs remained within 1°C of modern values during the past 225 years, consistent with a previous reconstruction based on coral growth rates and with most estimates based on the Mg/Ca of planktonic foraminifera from marine sediments.
    Beschreibung: Funding was provided by a scholarship to L.F.V.B. from ‘Consejo Nacional de Ciencia y Tecnología’ (CONACyT-Mexico), by CONACyT projects 104358 and 23749 to P.B., and by NSF OCE-0926986 to A.L.C. and D.W.O.
    Beschreibung: 2013-03-29
    Schlagwort(e): Atlantic Warm Pool ; Atlantic multidecadal variability ; Little Ice Age ; Sr/Ca ; Coral ; Sea surface temperature
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    American Geophysical Union
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 21 (2006): PA1014, doi:10.1029/2005PA001162.
    Beschreibung: Sea surface temperature (SST) and seawater δ18O (δ18Ow) were reconstructed in a suite of sediment cores from throughout the Arabian Sea for four distinct time intervals (0 ka, 8 ka, 15 ka, and 20 ka) with the aim of understanding the history of the Indian Monsoon and the climate of the Arabian Sea region. This was accomplished through the use of paired Mg/Ca and δ18O measurements of the planktonic foraminifer Globigerinoides ruber. By analyzing basin-wide changes and changes in cross-basinal gradients, we assess both monsoonal and regional-scale climate changes. SST was colder than present for the majority of sites within all three paleotime slices. Furthermore, both the Indian Monsoon and the regional Arabian Sea mean climate have varied substantially over the past 20 kyr. The 20 ka and 15 ka time slices exhibit average negative temperature anomalies of 2.5°–3.5°C attributable, in part, to the influences of glacial atmospheric CO2 concentrations and large continental ice sheets. The elimination of the cross-basinal SST gradient during these two time slices likely reflects a decrease in summer monsoon and an increase in winter monsoon strength. Changes in δ18Ow that are smaller than the δ18O signal due to global ice volume reflect decreased evaporation and increased winter monsoon mixing. SSTs throughout the Arabian Sea were still cooler than present by an average of 1.4°C in the 8 ka time slice. These cool SSTs, along with lower δ18Ow throughout the basin, are attributed to stronger than modern summer and winter monsoons and increased runoff and precipitation. The results of this study underscore the importance of taking a spatial approach to the reconstruction of processes such as monsoon upwelling.
    Beschreibung: Analyses were funded by a SGER grant from the NSF (OCE03–34598). Funding was also provided by a Schlanger Ocean Drilling Program Fellowship (to K.A.D.) and NSF Grant OCE02–20776 (to D.W.O.). 16
    Schlagwort(e): Arabian Sea ; Mg/Ca ; Indian monsoon
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-05-25
    Beschreibung: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Earth and Planetary Science Letters 387 (2014): 240–251, doi:10.1016/j.epsl.2013.11.032.
    Beschreibung: Evidence from geologic archives suggests that there were large changes in the tropical hydrologic cycle associated with the two prominent northern hemisphere deglacial cooling events, Heinrich Stadial 1 (HS1; ∼19 to 15 kyr BP; kyr BP = 1000 yr before present) and the Younger Dryas (∼12.9 to 11.7 kyr BP). These hydrologic shifts have been alternatively attributed to high and low latitude origin. Here, we present a new record of hydrologic variability based on planktic foraminifera-derived δ18O of seawater (δ18Osw) estimates from a sediment core from the tropical Eastern Indian Ocean, and using 12 additional δ18Osw records, construct a single record of the dominant mode of tropical Eastern Equatorial Pacific and Indo-Pacific Warm Pool (IPWP) hydrologic variability. We show that deglacial hydrologic shifts parallel variations in the reconstructed interhemispheric temperature gradient, suggesting a strong response to variations in the Atlantic Meridional Overturning Circulation and the attendant heat redistribution. A transient model simulation of the last deglaciation suggests that hydrologic changes, including a southward shift in the Intertropical Convergence Zone (ITCZ) which likely occurred during these northern hemisphere cold events, coupled with oceanic advection and mixing, resulted in increased salinity in the Indonesian region of the IPWP and the eastern tropical Pacific, which is recorded by the δ18Osw proxy. Based on our observations and modeling results we suggest the interhemispheric temperature gradient directly controls the tropical hydrologic cycle on these time scales, which in turn mediates poleward atmospheric heat transport.
    Beschreibung: ThisworkwasfundedbytheNationalScienceFoundation;theOceanandClimateChangeInstituteandtheAcademicProgramsOfficeatWoodsHoleOceano-graphicInstitution;BMBF(PABESIA);andDFG(He3412/15-1)
    Schlagwort(e): Indo-Pacific ; Eastern Equatorial Pacific ; δ18O of seawater ; Deglaciation ; Heat transport
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Format: application/msword
    Format: text/plain
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 32 (2017): 146–160, doi:10.1002/2016PA002976.
    Beschreibung: Coral skeletons are valuable archives of past ocean conditions. However, interpretation of coral paleotemperature records is confounded by uncertainties associated with single-element ratio thermometers, including Sr/Ca. A new approach, Sr-U, uses U/Ca to constrain the influence of Rayleigh fractionation on Sr/Ca. Here we build on the initial Pacific Porites Sr-U calibration to include multiple Atlantic and Pacific coral genera from multiple coral reef locations spanning a temperature range of 23.15–30.12°C. Accounting for the wintertime growth cessation of one Bermuda coral, we show that Sr-U is strongly correlated with the average water temperature at each location (r2 = 0.91, P 〈 0.001, n = 19). We applied the multispecies spatial calibration between Sr-U and temperature to reconstruct a 96 year long temperature record at Mona Island, Puerto Rico, using a coral not included in the calibration. Average Sr-U derived temperature for the period 1900–1996 is within 0.12°C of the average instrumental temperature at this site and captures the twentieth century warming trend of 0.06°C per decade. Sr-U also captures the timing of multiyear variability but with higher amplitude than implied by the instrumental data. Mean Sr-U temperatures and patterns of multiyear variability were replicated in a second coral in the same grid box. Conversely, Sr/Ca records from the same two corals were inconsistent with each other and failed to capture absolute sea temperatures, timing of multiyear variability, or the twentieth century warming trend. Our results suggest that coral Sr-U paleothermometry is a promising new tool for reconstruction of past ocean temperatures.
    Beschreibung: NSF Graduate Research Fellowships Grant Numbers: NSF-OCE-1338320, NSF-OCE-1031971, NSF-OCE-0926986; WHOI Access to the Sea Grant Numbers: 27500056, 0734826; NSF HRD; UPR Central Administration to EAHD through the Center for Applied Tropical Ecology and Conservation of UPR
    Beschreibung: 2017-08-16
    Schlagwort(e): Coral ; Temperature ; Paleoceangraphy ; Paleothermometry ; Global warming ; Biomineralization
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 20 (2005): PA4005, doi:10.1029/2004PA001061.
    Beschreibung: Detailed deglacial and Holocene records of planktonic δ18O and Mg/Ca–based sea surface temperature (SST) from the Okinawa Trough suggest that at ∼18 to 17 thousand years before present (kyr B.P.), late spring/early summer SSTs were approximately 3°C cooler than today, while surface waters were up to 1 practical salinity unit saltier. These conditions are consistent with a weaker influence of the summer East Asian Monsoon (EAM) than today. The timing of suborbital SST oscillations suggests a close link with abrupt changes in the EAM and North Atlantic climate. A tropical influence, however, may have resulted in subtle decoupling between the North Atlantic and the Okinawa Trough/EAM during the deglaciation. Okinawa Trough surface water trends in the Holocene are consistent with model simulations of an inland shift of intense EAM precipitation during the middle Holocene. Millennial-scale alternations between relatively warm, salty conditions and relatively cold, fresh conditions suggest varying influence of the Kuroshio during the Holocene.
    Beschreibung: Funding for this research was provided by NSFC (grants 40106006 and 40206007), SKLLQG (grant LLQG0204), and the NSF (OCE-020776 to DWO). Y.S.'s visit to WHOI was supported via a NSF START Fellowship.
    Schlagwort(e): Okinawa Trough ; Deglaciation ; Holocene ; Kuroshio Current ; East Asian monsoon ; Mg/Ca ; Oxygen isotopes ; Foraminifera
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 23 (2008): PA3102, doi:10.1029/2007PA001572.
    Beschreibung: We analyzed strontium/calcium ratios (Sr/Ca) in four colonies of the Atlantic coral genus Montastrea with growth rates ranging from 2.3 to 12.6 mm a−1. Derived Sr/Ca–sea surface temperature (SST) calibrations exhibit significant differences among the four colonies that cannot be explained by variations in SST or seawater Sr/Ca. For a single coral Sr/Ca ratio of 8.8 mmol mol−1, the four calibrations predict SSTs ranging from 24.0° to 30.9°C. We find that differences in the Sr/Ca–SST relationships are correlated systematically with the average annual extension rate (ext) of each colony such that Sr/Ca (mmol mol−1) = 11.82 (±0.13) – 0.058 (±0.004) × ext (mm a−1) – 0.092 (±0.005) × SST (°C). This observation is consistent with previous reports of a link between coral Sr/Ca and growth rate. Verification of our growth-dependent Sr/Ca–SST calibration using a coral excluded from the calibration reconstructs the mean and seasonal amplitude of the actual recorded SST to within 0.3°C. Applying a traditional, nongrowth-dependent Sr/Ca–SST calibration derived from a modern Montastrea to the Sr/Ca ratios of a conspecific coral that grew during the early Little Ice Age (LIA) (400 years B.P.) suggests that Caribbean SSTs were 〉5°C cooler than today. Conversely, application of our growth-dependent Sr/Ca–SST calibration to Sr/Ca ratios derived from the LIA coral indicates that SSTs during the 5-year period analyzed were within error (±1.4°C) of modern values.
    Beschreibung: This work was funded by National Science Foundation (NSF) grant OCE- 0402728, the WHOI Ocean and Climate Change Institute, and an NSF Graduate Student Fellowship.
    Schlagwort(e): Coral ; Strontium/calcium ; Growth rate
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 117 (2012): D19108, doi:10.1029/2012JD018060.
    Beschreibung: Existing paleoclimate data suggest a complex evolution of hydroclimate within the Indo-Pacific Warm Pool (IPWP) during the Holocene epoch. Here we introduce a new leaf wax isotope record from Sulawesi, Indonesia and compare proxy water isotope data with ocean-atmosphere general circulation model (OAGCM) simulations to identify mechanisms influencing Holocene IPWP hydroclimate. Modeling simulations suggest that orbital forcing causes heterogenous changes in precipitation across the IPWP on a seasonal basis that may account for the differences in time-evolution of the proxy data at respective sites. Both the proxies and simulations suggest that precipitation variability during the September–November (SON) season is important for hydroclimate in Borneo. The preëminence of the SON season suggests that a seasonally lagged relationship between the Indian
    Beschreibung: J. Tierney acknowledges the NOAA Climate and Global Change Postdoctoral Fellowship for support.
    Beschreibung: 2013-04-04
    Schlagwort(e): Holocene climate ; Indian monsoon ; Indo-Pacific warm pool ; Leaf waxes ; Stable isotopes ; Walker circulation
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2022-10-26
    Beschreibung: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gu, S., Liu, Z., Oppo, D. W., Lynch-Stieglitz, J., Jahn, A., Zhang, J., & Wu, L. Assessing the potential capability of reconstructing glacial Atlantic water masses and AMOC using multiple proxies in CESM. Earth and Planetary Science Letters, 541, (2020): 11629, doi:10.1016/j.epsl.2020.116294.
    Beschreibung: Reconstructing the Atlantic Meridional Overturning Circulation (AMOC) during the Last Glacial Maximum (LGM) is essential for understanding glacial-interglacial climate change and the carbon cycle. However, despite many previous studies, uncertainties remain regarding the glacial water mass distributions in the Atlantic and the AMOC intensity. Here we use an isotope enabled ocean model with multiple geotracers (δ 13 C,E Νd,231 Pa/ 230Th,δ 18 Ο and Δ 14 C) and idealized water tracers to study the potential constraints on LGM ocean circulation from multiple proxies. Our model suggests that the glacial Atlantic water mass distribution can be accurately constrained by the air-sea gas exchange signature of water masses (δ13 C AS), but E Nd might overestimate the North Atlantic Deep Water (NADW) percentage in the deep Atlantic probably because of the boundary source of Nd. A sensitivity experiment with an AMOC of similar geometry but much weaker strength suggests that the correct AMOC geometry is more important than the AMOC strength for simulating the observed glacial δ13 C AS and E Nd and distributions. The kinematic tracer 231Pa/230Th is sensitive to AMOC intensity, but the interpretation might be complicated by the AMOC geometry and AABW transport changes during the LGM. δ 18 Ο in the benthic foraminifera (δ 18 Οc) from the Florida Straits provides a consistent measure of the upper ocean boundary current in the model, which potentially provides an unambiguous method to reconstruct glacial AMOC intensity. Finally, we propose that the moderate difference between AMOC intensity at LGM and PD, if any, is caused by the competition of the responses to CO2 forcing and continental ice sheet forcing.
    Beschreibung: We thank two anonymous reviewers for their useful and constructive comments. We also thank Editor Dr Laura F. Robinson for handling the manuscript. This work is supported by National Science Foundation of China No. 41630527, US National Science Foundation (NSF) P2C2 projects (1401778, 1401802, and 1566432). We would like to acknowledge the high-performance computing support from Yellowstone (ark:/85065/d7wd3xhc) and Cheyenne (doi:10.5065/D6RX99HX) provided by NCAR's Computational and Information Systems Laboratory, sponsored by the National Science Foundation and from Center for High Performance Computing and System Simulation, Pilot National Laboratory for Marine Science and Technology (Qingdao). Data used to produce the results in this study can be obtained from HPSS at CISL: /home/sgu28/CTRACE_decadal or by contacting the authors.
    Schlagwort(e): Last Glacial Maximum ; AMOC ; Water mass ; Multi-proxy
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2022-10-26
    Beschreibung: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution-NonCommercial‐NoDerivs License. The definitive version was published in Rodriguez, L. G., Cohen, A. L., Ramirez, W., Oppo, D. W., Pourmand, A., Edwards, R. L., Alpert, A. E., & Mollica, N. Mid-Holocene, coral-based sea surface temperatures in the western tropical Atlantic. Paleoceanography and Paleoclimatology, 34(7), (2019): 1234-1245, doi:10.1029/2019PA003571.
    Beschreibung: The Holocene is considered a period of relative climatic stability, but significant proxy data‐model discrepancies exist that preclude consensus regarding the postglacial global temperature trajectory. In particular, a mid‐Holocene Climatic Optimum, ~9,000 to ~5,000 years BP, is evident in Northern Hemisphere marine sediment records, but its absence from model simulations raises key questions about the ability of the models to accurately simulate climate and seasonal biases that may be present in the proxy records. Here we present new mid‐Holocene sea surface temperature (SST) data from the western tropical Atlantic, where twentieth‐century temperature variability and amplitude of warming track the twentieth‐century global ocean. Using a new coral thermometer Sr‐U, we first developed a temporal Sr‐U SST calibration from three modern Atlantic corals and validated the calibration against Sr‐U time series from a fourth modern coral. Two fossil corals from the Enriquillo Valley, Dominican Republic, were screened for diagenesis, U‐series dated to 5,199 ± 26 and 6,427 ± 81 years BP, respectively, and analyzed for Sr/Ca and U/Ca, generating two annually resolved Sr‐U SST records, 27 and 17 years long, respectively. Average SSTs from both corals were significantly cooler than in early instrumental (1870–1920) and late instrumental (1965–2016) periods at this site, by ~0.5 and ~0.75 °C, respectively, a result inconsistent with the extended mid‐Holocene warm period inferred from sediment records. A more complete sampling of Atlantic Holocene corals can resolve this issue with confidence and address questions related to multidecadal and longer‐term variability in Holocene Atlantic climate.
    Beschreibung: This study was supported by NSF OCE 1747746 to Anne Cohen and by NSF OCE 1805618 to Anne Cohen and Delia Oppo. Eric Loss and his crew on Pangaea Exploration's Sea Dragon enabled fieldwork in Martinique, and George P. Lohman, Thomas DeCarlo, and Hanny Rivera assisted with coral coring. Kathryn Pietro and Julia Middleton assisted in the laboratory, and Louis Kerr provided technical support on the SEM at MBL. Gretchen Swarr provided technical support on the Element and iCap ICPMS at WHOI. We also thank Edwin Hernandez, Jose Morales, and Amos Winter for discussion. All data generated in this study will be made publicly available at http://www.ncdc.noaa.gov/data‐ access/paleoclimatology‐data/datasets
    Schlagwort(e): Mid‐Holocene ; Proxy SST ; Sr‐U thermometer ; Tropical Atlantic ; Climatic Optimum ; Coral
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2022-08-19
    Beschreibung: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography and Paleoclimatology 37, (2022): e2021PA004379, https://doi.org/10.1029/2021pa004379.
    Beschreibung: Atlantic Meridional Overturning Circulation (AMOC) plays a central role in the global redistribution of heat and precipitation during both abrupt and longer-term climate shifts. Over the next century, AMOC is projected to weaken due to greenhouse gas warming, though projecting its future behavior is dependent on a better understanding of how AMOC changes are forced. Seeking to resolve an apparent contradiction of AMOC trends from paleorecords of the more recent past, we reconstruct seawater cadmium, a nutrient-like tracer, in the Florida Straits over the last ∼8,000 years, with emphasis on the last millennium. The gradual reduction in seawater Cd over the last 8,000 years could be due to a reduction in AMOC, consistent with cooling Northern Hemisphere temperatures and a southward shift of the Intertropical Convergence Zone. However, it is difficult to reconcile this finding with evidence for an increase in geostrophic flow through the Florida Straits over the same time period. We combine data from intermediate water depth sediment cores to extend this record into the Common Era at sufficient resolution to address the broad scale changes of this time period. There is a small decline in the Cd concentration in the Late Little Ice Age relative to the Medieval Climate Anomaly, but this change was much smaller than the changes observed over the Holocene and on the deglaciation. This suggests that any trend in the strength of AMOC over the last millennium must have been very subtle.
    Beschreibung: This work was funded by the NSF Graduate Research Fellowship DGE-1148903 (SV) and NSF grant OCE-1459563 and OCE-1851900 (JLS).
    Schlagwort(e): AMOC ; seawater cadmium ; Florida Straits ; Holocene ; Little Ice Age
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...