ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AM1  (2)
Collection
Keywords
Publisher
Years
  • 1
    ISSN: 0948-5023
    Keywords: Keywords Human Carbonic Anhydrase II ; Semiempirical MO Theory ; AM1 ; Enzyme Catalysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The approach of CO2 to a series of active site model complexes of human carbonic anhydrase   II (HCAII) and its catalytic hydration to bicarbonate anion have been investigated using semiempirical MO theory (AM1). The results show that direct nucleophilic attack of zinc-bound hydroxide to the substrate carbon occurs in each model system. Further rearrangement of the bicarbonate complex thus formed via a rotation-like movement of the bicarbonate ligand can only be found in active site model systems that include at least one additional water molecule. Further refinement of the model complex by adding a methanol molecule to mimic Thr-199 makes this process almost activationless. The formation of the final bicarbonate complex by an internal (intramolecular) proton transfer is only possible in the simplest of all model systems, namely {[Im3Zn(OH)]+·CO2}. The energy of activation for this process, however, is 36.8 kcal·mol−1 and thus too high for enzymatic catalysis. Therefore, we conclude that within the limitations of the model systems presented and the level of theory employed, the overall mechanism for the formation of the bicarbonate complex comprises an initial direct nucleophilic attack of zinc-bound hydroxide to carbon dioxide followed by a rotation-like rearrangement of the bicarbonate ligand via a penta-coordinate Zn2+ transition state structure, including the participation of an extra active site water molecule.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0948-5023
    Keywords: Keywords: Partition coefficient ; logP ; AM1 ; PM3 ; QSAR ; neural netIntroduction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract A back-propagation artificial neural net has been trained to estimate logP values of a large range of organic molecules from the results of AM1 and PM3 semiempirical MO calculations. The input descriptors include molecular properties such as electrostatic potentials, total dipole moments, mean polarizabilities, surfaces, volumes and charges derived from semiempirical calculated gas phase geometries. These properties can be related to the molecule′s solubility in hydrophilic or lipophilic media. The input descriptors were selected with the help of a multiple linear regression analysis. The resulting net estimates the logP values of 105 organic compounds with a standard deviation of 0.53 units from the experimental logP values for AM1 and 0.67 units in the case of PM3.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...