ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2019-06-28
    Beschreibung: This paper describes the formulation and validation of a high-order linearized mathematical model of helicopter flight mechanics, which includes rotor flap and lag degrees of freedom as well as inflow dynamics. The model is extracted numerically from an existing nonlinear, blade element, time simulation model. Extensive modifications in the formulation and solution process of the nonlinear model, required for a theoretically rigorous linearization, are described in detail. The validation results show that the linearized model successfully captures the coupled rotor-fuselage dynamics in the frequency band most critical for the design of advanced flight control systems. Additional results quantify the extent to which the order of the model can be reduced without loss of fidelity.
    Schlagwort(e): AIRCRAFT STABILITY AND CONTROL
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2019-07-13
    Beschreibung: This paper describes the formulation and validation of a high-order linearized mathematical model of helicopter flight mechanics, which includes rotor flap and lag degrees of freedom as well as inflow dynamics. The model is extracted numerically from an existing nonlinear, blade element, real-time simulation model. Extensive modifications in the formulation and solution process of the nonlinear model, required for a theoetically rigorous linearization, are described in detail. The validation results show that the linearized model successfully captures the coupled rotor-fuselage dynamics in the frequency band most critical for the design of advanced flight control systems. Additional results quantify the extent to which the order of the model can be reduced without loss of fidelity.
    Schlagwort(e): AIRCRAFT STABILITY AND CONTROL
    Materialart: American Helicopter Society, Journal (ISSN 0002-8711); 38; 4; p. 16-27
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2019-07-13
    Beschreibung: A high-order linearized model of helicopter flight dynamics is extracted from a nonlinear time domain simulation. The model has 29 states that describe the fuselage rigid body degrees of freedom, the flap and lag dynamics in a nonrotating coordinate system, the inflow dynamics, the delayed entry of the horizontal tail into the main rotor wake, and, approximately, the blade torsion dynamics. The nonlinear simulation is obtained by extensively modifying the GENHEL computer program. The results indicate that the agreement between the linearized and the nonlinear model is good for small perturbations, and deteriorates for large amplitude maneuvers.
    Schlagwort(e): AIRCRAFT STABILITY AND CONTROL
    Materialart: AHS, Annual Forum; May 21, 1990 - May 23, 1990; Washington, DC; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2019-07-13
    Beschreibung: This paper describes a new trim procedure, that includes the calculation of the steady-state response of the rotor blades, and that is applicable to straight flight and steady coordinated turns. This paper also describes the results of a validation study for a high order linearized model of helicopter flight dynamics, that includes rotor, inflow, and actuator dynamics. The model is obtained by numerical perturbations of a nonlinear, blade element type mathematical model. Predicted responses are compared with flight test data for two values of flight speed. The comparison is carried out in the frequency domain. Numerical simulations show that the trim algorithm is very accurate, and preserves the periodicity of the aircraft states. The results also indicate that the predictions of the linearized model are in good agreement with flight test data, especially at medium and high frequencies.
    Schlagwort(e): AIRCRAFT STABILITY AND CONTROL
    Materialart: AHS Annual Forum; May 06, 1991 - May 08, 1991; Phoenix, AZ; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...