ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AIRCRAFT STABILITY AND CONTROL  (4)
  • Earth Resources and Remote Sensing  (3)
  • 1
    Publication Date: 2019-06-28
    Description: As part of a comprehensive flight-test investigation of short takeoff and landing (STOL) operating systems for the terminal systems for the terminal area, an automatic landing system has been developed and evaluated for a light wing-loading turboprop-powered aircraft. An advanced digital avionics system performed display, navigation, guidance, and control functions for the test aircraft. Control signals were generated in order to command powered actuators for all conventional controls and for a set of symmetrically driven wing spoilers. This report describes effects of the spoiler control on longitudinal autoland (automatic landing) performance. Flight-test results, with and without spoiler control, are presented and compared with available (basically, conventional takeoff and landing) performance criteria. These comparisons are augmented by results from a comprehensive simulation of the controlled aircraft that included representations of the microwave landing system navigation errors that were encountered in flight as well as expected variations in atmospheric turbulence and wind shear. Flight-test results show that the addition of spoiler control improves the touchdown performance of the automatic landing system. Spoilers improve longitudinal touchdown and landing pitch-attitude performance, particularly in tailwind conditions. Furthermore, simulation results indicate that performance would probably be satisfactory for a wider range of atmospheric disturbances than those encountered in flight. Flight results also indicate that the addition of spoiler control during the final approach does not result in any measurable change in glidepath track performance, and results in a very small deterioration in airspeed tracking. This difference contrasts with simulations results, which indicate some improvement in glidepath tracking and no appreciable change in airspeed tracking. The modeling problem in the simulation that contributed to this discrepancy with flight was not resolved.
    Keywords: AIRCRAFT STABILITY AND CONTROL
    Type: NASA-TM-85873 , A-9222 , NAS 1.15:85873
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: As part of a comprehensive flight-test program of STOL operating systems for the terminal area, an automatic landing system was developed and evaluated for a light wing loading turboprop aircraft. The aircraft utilized an onboard advanced digital avionics system. Flight tests were conducted at a facility that included a STOL runway site with a microwave landing system. Longitudinal flight-test results were presented and compared with available (basically CTOL) criteria. These comparisons were augmented by results from a comprehensive simulation of the controlled aircraft which included representations of navigation errors that were encountered in flight and atmospheric disturbances. Acceptable performance on final approach and at touchdown was achieved by the autoland (automatic landing) system for the moderate winds and turbulence conditions encountered in flight. However, some touchdown performance goals were marginally achieved, and simulation results suggested that difficulties could be encountered in the presence of more extreme atmospheric conditions. Suggestions were made for improving performance under those more extreme conditions.
    Keywords: AIRCRAFT STABILITY AND CONTROL
    Type: NASA-TM-84270 , A-8993 , NAS 1.15:84270
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-27
    Description: The simulated response is described of a STOL aircraft to Microwave Landing System (MLS) multipath errors during final approach and touchdown. The MLS azimuth, elevation, and DME multipath errors were computed for a relatively severe multipath environment at Crissy Field California, utilizing an MLS multipath simulation at MIT Lincoln Laboratory. A NASA/Ames six-degree-of-freedom simulation of an automatically-controlled deHavilland C-8A STOL aircraft was used to determine the response to these errors. The results show that the aircraft response to all of the Crissy Field MLS multipath errors was small. The small MLS azimuth and elevation multipath errors did not result in any discernible aircraft motion, and the aircraft response to the relatively large (200-ft (61-m) peak) DME multipath was noticeable but small.
    Keywords: AIRCRAFT STABILITY AND CONTROL
    Type: NASA-TM-X-73154 , A-6693
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: A viewgraph presentation of a prototype Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR) for atmospheric temperature sounding is shown. The topics include: 1) Overview; 2) Requirements & Error allocations; 3) Design; 4) Problems, and How We Solved Them; and 5) Results
    Keywords: Earth Resources and Remote Sensing
    Type: 9th Specialist Meeting on Microwave Radiometry and Remote Sensing Applications; Feb 28, 2006 - Mar 03, 2006; San Juan; Puerto Rico
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: An error budget is presented to meet 1 Kelvin radiometric accuracy in a geostationary atmospheric sounder with 50 km spatial resolution on the earth. The gain and phase errors are weighted by the magnitude of visibility versus antenna separation, and requirements range between approx.0.5% and 0.3 degrees of amplitude and phase, respectively, for the closest spacings at the center of the array, and about 5% and 3 degrees for the majority of the array. The latter requirement is met by our design without any special testing or stabilizations by reference signals. The former is met using an internal noise diode reference and by measuring the detailed antenna patterns on the antenna range. Biases and other additive errors in the raw visibility samples must be below about 2 mK on average, and this requirement is met by a phase shifting scheme applied to the local oscillator distribution. An outline of the data processing is presented, along with the first images from this system.
    Keywords: Earth Resources and Remote Sensing
    Type: IEEE GeoScience and Remote Sensing Symposium; Jul 26, 2006 - Aug 04, 2006; Denver, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The NASA Dryden Flight Research Center is flight testing a triply redundant digital fly-by-wire (DFBW) control system installed in an F-8 aircraft. The full-time, full-authority system performs three-axis flight control computations, including stability and command augmentation, autopilot functions, failure detection and isolation, and self-test functions. Advanced control law experiments include an active flap mode for ride smoothing and maneuver drag reduction. This paper discusses research being conducted on computer synchronization, fault detection, fault isolation, and recovery from transient faults. The F-8 DFBW system has demonstrated immunity from nuisance fault declarations while quickly identifying truly faulty components.
    Keywords: AIRCRAFT STABILITY AND CONTROL
    Type: AIAA PAPER 77-1507 , Digital Avionics Systems Conference; Nov 02, 1977 - Nov 04, 1977; Los Angeles, CA
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR) is a new Earth remote sensing instrument concept that has been under development at the Jet Propulsion Laboratory. First conceived in 1998 as a NASA New Millennium Program mission and subsequently developed in 2003-2006 as a proof-of-concept prototype under the NASA Instrument Incubator Program, it is intended to fill a serious gap in our Earth remote sensing capabilities - namely the lack of a microwave atmospheric sounder in geostationary orbit. The importance of such observations have been recognized by the National Academy of Sciences National Research Council, which recently released its report on a 'Decadal Survey' of NASA Earth Science activities1. One of the recommended missions for the next decade is a geostationary microwave sounder. GeoSTAR is well positioned to meet the requirements of such a mission, and because of the substantial investment NASA has already made in GeoSTAR technology development, this concept is fast approaching the necessary maturity for implementation in the next decade. NOAA is also keenly interested in GeoSTAR as a potential payload on its next series of geostationary weather satellites, the GOES-R series. GeoSTAR, with its ability to map out the three-dimensional structure of temperature, water vapor, clouds, precipitation and convective parameters on a continual basis, will significantly enhance our ability to observe hurricanes and other severe storms. In addition, with performance matching that of current and next generation of low-earth-orbiting microwave sounders, GeoSTAR will also provide observations important to the study of the hydrologic cycle, atmospheric processes and climate variability and trends. In particular, with GeoSTAR it will be possible to fully resolve the diurnal cycle. We discuss the GeoSTAR concept and basic design, the performance of the prototype, and a number of science applications that will be possible with GeoSTAR. The work reported on here was performed at the Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration.
    Keywords: Earth Resources and Remote Sensing
    Type: Data: SPIE Optics and Photonics; Aug 26, 2007 - Aug 30, 2007; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...