ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AIRCRAFT PROPULSION AND POWER  (463)
  • 1980-1984  (187)
  • 1975-1979  (276)
  • 1935-1939
  • 1
    Publication Date: 2016-06-07
    Description: Automated instruments were installed on a commercial B-747 aircraft, during the program, to obtain baseline data and to monitor key atmospheric constituents associated with emissions of aircraft engines in order to determine if aircraft are contributing to pollution of the upper atmosphere. Data thus acquired on a global basis over the commercial air routes for 5 to 10 years will be analyzed. Ozone measurements in the 29,000 to 45,000 foot altitude were expanded over what has been available from ozonesondes. Limited aerosol composition measurements from filter samples show low levels of sulfates and nitrates in the upper troposphere. Recently installed instruments for measurement of carbon monoxide and condensation nuclei are beginning to return data.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Aircraft Eng. Emissions; p 323-355
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: The energy efficient engine high-pressure turbine is a single stage system based on technology advancements in the areas of aerodynamics, structures and materials to achieve high performance, low operating economics and durability commensurate with commercial service requirements. Low loss performance features combined with a low through-flow velocity approach results in a predicted efficiency of 88.8 for a flight propulsion system. Turbine airfoil durability goals are achieved through the use of advanced high-strength and high-temperature capability single crystal materials and effective cooling management. Overall, this design reflects a considerable extension in turbine technology that is applicable to future, energy efficient gas-turbine engines.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA-CR-165608 , NAS 1.26:165608 , PWA-5594-171
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-27
    Description: A single stage compressor was designed with the intent of demonstrating that, for a tip speed and hub-tip ratio typical of an advanced core compressor front stage, the use of low aspect ratio can permit high levels of blade loading to be achieved at an acceptable level of efficiency. The design pressure ratio is 1.8 at an adiabatic efficiency of 88.5 percent. Both rotor and stator have multiple-circular-arc airfoil sections. Variable IGV and stator vanes permit low speed matching adjustments. The design incorporates an inlet duct representative of an engine transition duct between fan and high pressure compressor.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA-CR-159555 , PWA-5583-25
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The results of a program of experimental and analytical research in casing treatments over axial compressor rotor blade tips are presented. Circumferential groove, axial-skewed slot and blade angle slot treatments were tested at low speeds. With the circumferential groove treatment the stalling flow was reduced 5.8% at negligible efficiency sacrifice. The axial-skewed slot treatment improved the stalling flow by 15.3%; 1.8 points in peak efficiency were sacrificed. The blade angle slot treatment improved the stalling flow by 15.0%; 1.4 points in peak efficiency were sacrificed. The favorable stalling flow situations correlated well with observations of higher-than-normal surface pressures on the rotor blade pressure surfaces in the tip region, and with increased maximum diffusions on the suction surfaces. Annulus wall pressure gradients, especially in the 50 to 75% chord region, are also increased and blade surface pressure loadings are shifted toward the trailing edge for treated configurations.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: ASME PAPER 75-GT-60 , American Society of Mechanical Engineers, Gas Turbine Conference and Products Show; Mar 02, 1975 - Mar 06, 1975; Houston, TX
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-27
    Description: The paper reports research restricted to steady turbulence flow in axisymmetric geometries under low speed and nonreacting conditions. Numerical computations are performed for a basic two-dimensional axisymmetrical flow field similar to that found in a conventional gas turbine combustor. Calculations include a stairstep boundary representation of the expansion flow, a conventional k-epsilon turbulence model and realistic accomodation of swirl effects. A preliminary evaluation of the accuracy of computed flowfields is accomplished by comparisons with flow visualizations using neutrally-buoyant helium-filled soap bubbles as tracer particles. Comparisons of calculated results show good agreement, and it is found that a problem in swirling flows is the accuracy with which the sizes and shapes of the recirculation zones may be predicted, which may be attributed to the quality of the turbulence model.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: In: Fluid mechanics of combustion systems; June 22, 23, 1981; Boulder, CO
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2006-07-16
    Description: Major solution techniques for internal computational fluid mechanics are discussed and some examples are presented. The major steps involved in developing a large computer code are then discussed.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Aeropropulsion 1979; p 187-230
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-17
    Description: Improving fuel efficiency, new sources of jet fuel, and noise and emission control are subjects of NASA's aeronautics program. Projects aimed at attaining a 5% fuel savings for existing engines and a 13-22% savings for the next generation of turbofan engines using advanced components, and establishing a basis for turboprop-powered commercial air transports with 30-40% savings over conventional turbofan aircraft at comparable speeds and altitudes, are discussed. Fuel sources are considered in terms of reduced hydrogen and higher aromatic contents and resultant higher liner temperatures, and attention is given to lean burning, improved fuel atomization, higher freezing-point fuel, and deriving jet fuel from shale oil or coal. Noise sources including the fan, turbine, combustion process, and flow over internal struts, and attenuation using acoustic treatment, are discussed, while near-term reduction of polluting gaseous emissions at both low and high power, and far-term defining of the minimum gaseous-pollutant levels possible from turbine engines are also under study.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Astronautics and Aeronautics; 18; Jan. 198
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: The attractive performance retention characteristics of the JT8D engine are described. Because of its moderate bypass ratio and turbine temperature, and stiff structural design, the performance retention versus flight cycles of the JT8D engine sets a standard that is difficult for other engines to equal. In addition, the significant benefits of refurbishment of the JT8D engine are presented. Cold section refurbishment offers thrust specific fuel consumption improvements of up to 2 percent and payback in less than a year, making a very attractive investment option for the airlines.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA. Lewis Res. Center Aircraft Engine Diagnostics; p 63-81
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: A four stage, low pressure turbine component has been designed to power the fan and low pressure compressor system in the Energy Efficient Engine. Designs for a turbine intermediate case and an exit guide vane assembly also have been established. The components incorporate numerous technology features to enhance efficiency, durability, and performance retention. These designs reflect a positive step towards improving engine fuel efficiency on a component level. The aerodynamic and thermal/mechanical designs of the intermediate case and low pressure turbine components are presented and described. An overview of the predicted performance of the various component designs is given.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA-CR-167973 , NAS 1.26:167973 , PWA-5594-191
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-28
    Description: Results are presented of wind tunnel tests conducted to verify the performance improvements of a refined ejector nozzle design for advanced supersonic transport propulsion systems. The analysis of results obtained at simulated engine operating conditions is emphasized. Tests were conducted with models of approximately 1/10th scale which were configured to simulate nozzle operation at takeoff, subsonic cruise, transonic cruise, and supersonic cruise. Transonic cruise operation was not a consideration during the nozzle design phase, although an evaluation at this condition was later conducted. Test results, characterized by thrust and flow coefficients, are given for a range of nozzle pressure ratios, emphasizing the thrust performance at the engine operating conditions predicted for each flight Mach number. The results indicate that nozzle performance goals were met or closely approximated at takeoff and supersonic cruise, while subsonic cruise performance was within 2.3 percent of the goal with further improvement possible.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: AIAA PAPER 83-1287
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...