ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-28
    Description: Flight tests were performed on an F-14 aircraft to evaluate the use of flush pressure orifices on the nose section for obtaining air data at transonic speeds over a large range of flow angles. This program was part of a flight test and wind tunnel program to assess the accuracies of such systems for general use on aircraft. It also provided data to validate algorithms developed for the shuttle entry air data system designed at NASA Langley. Data were obtained for Mach numbers between 0.60 and 1.60, for angles of attack up to 26.0 deg, and for sideslip angles up to 11.0 deg. With careful calibration, a flush air data system with all flush orifices can provide accurate air data information over a large range of flow angles. Several orificies on the nose cap were found to be suitable for determination of stagnation pressure. Other orifices on the nose section aft of the nose cap were shown to be suitable for determination of static pressure. Pairs of orifices on the nose cap provided the most sensitive measurements for determining angles of attack and sideslip, although orifices located farther aft on the nose section could also be used.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TP-2716 , H-1277 , NAS 1.60:2716
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-14
    Description: Presented is a mathematical model derived from the Navier-Stokes equations of momentum and continuity, which may be accurately used to predict the behavior of conventionally mounted pneumatic sensing systems subject to arbitrary pressure inputs. Numerical techniques for solving the general model are developed. Both step and frequency response lab tests were performed. These data are compared with solutions of the mathematical model and show excellent agreement. The procedures used to obtain the lab data are described. In-flight step and frequency response data were obtained. Comparisons with numerical solutions of the math model show good agreement. Procedures used to obtain the flight data are described. Difficulties encountered with obtaining the flight data are discussed.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-100430 , H-1462 , NAS 1.15:100430
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: A technique of compensating for pneumatic distortion in pressure sensing devices was developed and verified. This compensation allows conventional pressure sensing technology to obtain improved unsteady pressure measurements. Pressure distortion caused by frictional attenuation and pneumatic resonance within the sensing system makes obtaining unsteady pressure measurements by conventional sensors difficult. Most distortion occurs within the pneumatic tubing which transmits pressure impulses from the aircraft's surface to the measurement transducer. To avoid pneumatic distortion, experiment designers mount the pressure sensor at the surface of the aircraft, (called in-situ mounting). In-situ transducers cannot always fit in the available space and sometimes pneumatic tubing must be run from the aircraft's surface to the pressure transducer. A technique to measure unsteady pressure data using conventional pressure sensing technology was developed. A pneumatic distortion model is reduced to a low-order, state-variable model retaining most of the dynamic characteristics of the full model. The reduced-order model is coupled with results from minimum variance estimation theory to develop an algorithm to compensate for the effects of pneumatic distortion. Both postflight and real-time algorithms are developed and evaluated using simulated and flight data.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-101716 , H-1586 , NAS 1.15:101716 , AIAA 28th Aerospace Sciences Meeting; Jan 08, 1990 - Jan 11, 1990; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: This paper presents a design study for a pressure based Flush airdata system (FADS) on the Hypersonic Air Launched Option (HALO) Vehicle. The analysis will demonstrate the feasibility of using a pressure based airdata system for the HALO and provide measurement uncertainty estimates along a candidate trajectory. The HALO is a conceived as a man-rated vehicle to be air launched from an SR-71 platform and is proposed as a testbed for an airbreathing hydrogen scramjet. A feasibility study has been performed and indicates that the proposed trajectory is possible with minimal modifications to the existing SR71 vehicle. The mission consists of launching the HALO off the top of an SR-71 at Mach 3 and 80,000 ft. A rocket motor is then used to accelerate the vehicle to the test condition. After the scramjet test is completed the vehicle will glide to a lakebed runway landing. This option provides reusability of the vehicle and scramjet engine. The HALO design will also allow for various scramjet engine and flowpath designs to be flight tested. For the HALO flights, measurements of freestream airdata are considered to be a mission critical to perform gain scheduling and trajectory optimization. One approach taken to obtaining airdata involves measurement of certain parameters such as external atmospheric winds, temperature, etc to estimate the airdata quantities. This study takes an alternate approach. Here the feasibility of obtaining airdata using a pressure-based flush airdata system (FADS) methods is assessed. The analysis, although it is performed using the HALO configuration and trajectory, is generally applicable to other hypersonic vehicles. The method to be presented offers the distinct advantage of inferring total pressure, Mach number, and flow incidence angles, without stagnating the freestream flow. This approach allows for airdata measurements to be made using blunt surfaces and significantly diminishes the heating load at the sensor. In the FADS concept a matrix of flush ports is placed in the vicinity of the aircraft nose, and the airdata are inferred indirectly from the measured pressures.
    Keywords: Spacecraft Design, Testing and Performance
    Type: AIAA Applied Aerodynamics Conference; Jun 20, 1994 - Jun 24, 1994; Colorado Springs, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...