ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: A numerical investigation of the interaction of an incident oblique shock wave with a turbulent duct flow is presented. The investigation consists of solving the three-dimensional, unsteady, compressible, mass averaged Navier-Stokes equations, using an implicit finite volume, lower-upper time marching code and incorporates the three-dimensional Baldwin-Lomax turbulence model. Computed results are obtained Mach number 2.9 for a turning angle of 13 degrees and Reynolds number based on duct width of 1.36 x 10 exp 7. Under various inlet conditions, the results clearly depict the flow characteristics, including the shock geometry, the separated flow region, the wall pressure distribution, and the skin friction distribution. The findings provide a physical understanding of the three-dimensional vortex structure of the flow in a duct in which a shock wave interacts with a turbulent boundary layer. The results show that the ratio of the boundary layer thickness to the duct width is the critical parameter in determining the separation structure.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 93-3127 , ; 11 p.|AIAA, Fluid Dynamics Conference; Jul 06, 1993 - Jul 09, 1993; Orlando, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...