ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-05-23
    Description: The static aeroelastic divergence characteristics of a delta-planform model of the canard control surface of a proposed air-to-ground missile have been studied both analytically and experimentally in the Mach number range from 0.6 to 3.0. The experiments indicated that divergence occurred at a nearly constant value of dynamic pressure at Mach numbers up to 1.2. At higher Mach numbers somewhat higher values of dynamic pressure were required to produce divergence. The analysis and the experiment indicate that the camber stiffness of the control surface and the stiffness of the control actuator are both important in divergence of surfaces of this type.
    Keywords: AERODYNAMICS
    Type: NACA-RM-L58E07
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-05-29
    Description: Static aeroelastic divergence characteristics of delta-planform model of canard control surfaces
    Keywords: AERODYNAMICS
    Type: NASA-TR-R-235
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: The results of a numerical analysis of two interacting lifting surfaces separated in the spanwise direction by a narrow gap are presented. The configuration consists of a semispan wing with the last 32 percent of the span structurally separated from the inboard section. The angle of attack of the outboard section is set independently from that of the inboard section. In the present study, the three-dimensional panel code VSAERO is used to perform the analysis. Computed values of tip surface lift and pitching moment coefficients are correlated with experimental data to determine the proper approach to model the gap region between the surfaces. Pitching moment data for various tip planforms are also presented to show how the variation of tip pitching moment with angle of attack may be increased easily in incompressible flow. Calculated three-dimensional characteristics in compressible flow at Mach numbers of 0.5 and 0.7 are presented for new tip planform designs. An analysis of sectional aerodynamic center shift as a function of Mach number is also included for a representative tip planform. It is also shown that the induced drag of the tip surface is reduced for negative incidence angles relative to the inboard section. The results indicate that this local drag reduction overcomes the associated increase in wing induced drag at high wing lift coefficients.
    Keywords: AERODYNAMICS
    Type: NASA-CR-177487 , NAS 1.26:177487
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: The results of a subsonic wind tunnel test of a semispan wing with an independently deflected tip surface are presented and analyzed. The tip surface was deflected about the quarter chord of the rectangular wing and accounted for 17 percent of the wing semispan. The test was conducted to measure the loads on the tip surface and to investigate the nature of aerodynamic interference effects between the wing and the deflected tip. Results are presented for two swept tip surfaces of similar planform but different airfoil distributions. The report contains plots of tip lift, drag, and pitching moment for various Reynolds numbers and tip deflection angles with respect to the inboard wing. Oil flow visualization photographs for a typical Reynolds number are also included. Important aerodynamic parameters such as lift and pitching moment slopes and tip aerodynamic center location are tabulated. A discussion is presented on the relationship between tip experimental data acquired in a steady flow and the prediction of unsteady tip motion at fixed wing angles of attack.
    Keywords: AERODYNAMICS
    Type: NASA-TM-102842 , A-90210 , NAS 1.15:102842
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...