ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-16
    Description: An error analysis program based on an output error estimation method was used to evaluate the effects of sensor and instrumentation errors on the estimation of aircraft stability and control derivatives. A Monte Carlo analysis was performed using simulated flight data for a high performance military aircraft, a large commercial transport, and a small general aviation aircraft for typical cruise flight conditions. The effects of varying the input sequence and combinations of the sensor and instrumentation errors were investigated. The results indicate that both the parameter accuracy and the corresponding measurement trajectory fit error can be significantly affected. Of the error sources considered, instrumentation lags and control measurement errors were found to be most significant.
    Keywords: AERODYNAMICS
    Type: Parameter Estimation Tech. and Appl. in Aircraft Flight Testing; p 261-280
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: Formal solutions to the wave equation may be conveniently described within the framework of generalized function theory. A generalized function theory is used to yield a formulation and formal solution of a wave equation describing oscillation of a flat plate from which a numerical method may be derived.
    Keywords: AERODYNAMICS
    Type: Old Dominion Univ., NASA/American Society for Engineering Ed; Old Dominion Univ.,
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: A large scale model of a generic three-dimensional sidewall compression scramjet inlet has been designed based on the results of a computational parametric study for testing in the 31-inch Mach 10 Hypersonic Wind Tunnel at the NASA Langley Research Center. In order to increase the instrumentation density in interaction regions for a highly instrumented model, it is desirable to make the model as large as possible. When the cross-sectional area of a model becomes large relative to the inviscid core size of the tunnel, the effects of blockage must be considered. In order to assess these effects, a blockage model (an inexpensive, much less densely instrumented version of the configuration) was fabricated for preliminary testing. Since it was desired to determine both the effect of the model on the performance of the wind tunnel and also to determine if the inlet would start, the model possessed a total of 32 static pressure orifices distributed on the forebody plane and sidewalls; seventeen static pressure orifices on the tunnel wall and 3 pitot probes on the model monitored the tunnel performance. This paper presents the design considerations in the development of the wind tunnel model and the blockage aspects of the effects of contraction ratio, cowl location, Reynolds number, and angle of attack.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 91-0294
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Keywords: AERODYNAMICS
    Type: International Conference on Numerical Methods in Fluid Dynamics; Jun 28, 1976 - Jul 02, 1976; Enschede; Netherlands
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Six alternative all-moving wing configurations applicable to the NASP hypersonic/transatmospheric vehicle have undergone aeroelasticity testing in NASA-Langley's Mach-20-capable Helium Tunnel that yielded data for such parametric variations as airfoil profile and wing planform, wing-pivot flexure stiffness, and mass imbalance. While all wings fluttered at dynamic pressures lower than predicted by second-order piston-theory aerodynamics, this was of limited amplitude, suggesting nonlinear external-flow behavior. Slab airfoils were more stable than diamond-shaped ones; blunt leading edges enhance stability relative to sharp ones, and stiffer pivolts extert a stabilizing influence.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 93-1315 , AIAA, ASME, ASCE, AHS, and ASC, Structures, Structural Dynamics and Materials Conference, 34th and AIAA and ASME, Adaptive Structures Forum; Apr 19, 1993 - Apr 22, 1993; La Jolla, CA; United States|; 10 p.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...