ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AERODYNAMICS  (1)
  • Chemistry  (1)
  • ASTRONOMY
  • 1975-1979  (2)
  • 1975  (2)
  • 1
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: The flow in a two foot diameter transonic rotor has been visualized using a fluorescent gas, 2, 3 butanedione, as a tracer. The technique allows the three dimensional flow to be imaged as a set of distinct planes. Quantitative static density maps can be obtained after correcting the images for distortion and nonlinearities introduced by the illumination and imaging systems. The visualized flow is compared to data taken simultaneously by high frequency pressure transducers near the rotor entrance and exit planes.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 75-24 , American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting; Jan 20, 1975 - Jan 22, 1975; Pasadena, CA
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 14 (1975), S. 2401-2415 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Interaction between polylysine and DNA's of varied G + C contents was studied using thermal denaturation and circular dichroism (CD). For each complex there is one melting band at a lower temperature tm, corresponding to the helix-coil transition of free base pairs, and another band at a higher temperature t′m, corresponding to the transition of polylysine-bound base pairs. For free base pairs, with natural DNA's and poly(dA-dT) a linear relation is observed between the tm and the G + C content of the particular DNA used. This is not true with poly(dG)·poly(dC), which has a tm about 20°C lower than the extrapolated value for DNA of 100% G + C. For polylysine-bound base pairs, a linear relation is also observed between the t′m and the G + C content of natural DNA's but neither poly(dA-dT) nor poly(dG)·poly(dC) complexes follow this relationship. The dependence of melting temperature on composition, expressed as dtm/dXG·C, where XG·C is the fraction of G·C pairs, is 60°C for free base pairs and only 21°C for polylysine-bound base pairs. This reduction in compositional dependence of Tm is similar to that observed for pure DNA in high ionic strength. Although the t′m of polylysine-poly(dA-dT) is 9°C lower than the extrapolated value for 0% G + C in EDTA buffer, it is independent of ionic strength in the medium and is equal to the tm0 extrapolated from the linear plot of tm against log Na+. There is also a noticeable similarity in the CD spectra of polylysine· and polyarginine·DNA complexes, except for complexes with poly(dA-dT). The calculated CD spectrum of polylysine-bound poly(dA-dT) is substantially different from that of polyarginine-bound poly(dA-dT).
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...