ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AERODYNAMICS  (26)
  • 2005-2009
  • 1990-1994  (10)
  • 1980-1984  (15)
  • 1955-1959  (1)
  • 1
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: NASA. Langley Research Center, Theoretical Aerodynamics Contractors' Workshop, Volume 2; p 539-55
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-18
    Description: A method for combining the cloud detector observation results from the Global Atmospheric Sampling Program (GASP) with Knollenberg probe observations of cloud particle concentration from other programs to derive estimates of the ambient concentration of particles larger than a given size was developed. The method was applied to estimate the probability of encountering particle concentrations which would degrade the performance of laminar flow control (LFC) aircraft. It is concluded that LF loss should occur only about one percent of the time in clear air and that flight within clouds should always result in a significant loss of LF, with 90 percent LF loss occurring about one percent of the time. Preliminary estimates of cloud encounter probability are presented for four airline routes, and conclusions are presented as to the best altitudes for cloud avoidance in extratropical and tropical latitudes.
    Keywords: AERODYNAMICS
    Type: Laminar Flow Control; p 75-94
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-10-02
    Description: Scale effects are discussed with reference to a conventional airfoil (NACA 64A010) and a supercritical airfoil (NLR 7301) at mean flow conditions that support both weak and strong shock waves. During the experiment the Reynolds number was varied from 3 x 10 to the sixth power at time history data are presented over the range of reduced frequencies that are important in aeroelastic applications. The experimental data show that viscous effects are important in the case of the supercritical airfoil at all flow conditions and in the case of the conventional airfoil under strong shock wave conditions. Some frequency dependent viscous effects were also observed.
    Keywords: AERODYNAMICS
    Type: AGARD Boundary Layer Effects on Unsteady Airfoils; 13 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: The Ames Fluid Mechanics Laboratory research program is presented in a series of research briefs. Nineteen projects covering aeronautical fluid mechanics and related areas are discussed and augmented with the publication and presentation output of the Branch for the period 1990-1993.
    Keywords: AERODYNAMICS
    Type: NASA-TM-108818 , A-94073 , NAS 1.15:108818
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: Steady, incompressible, turbulent, swirl-free flow through a circular-to-rectangular transition duck was studied experimentally. The cross-sectional area remains the same at the exit as at the inlet, but varies through the transition section to a maximum value approximately 15 percent above the inlet value. The cross-sectional geometry everywhere along the duct is defined by the equation of a superellipse. Mean and turbulence data were accumulated utilizing pressure and hot-wire instrumentation at five stations along the test section. Data are presented for operating bulk Reynolds numbers of 88,000 and 390,000. Measured quantities include total and static pressure, the three components of the mean velocity vector, and the six components of the Reynolds stress tensor. In addition to the transition duct measurements, a hot-wire technique which relies on the sequential use of single rotatable normal and slant-wire probes was proposed. The technique is applicable for measurement of the total mean velocity vector and the complete Reynolds stress tensor when the primary flow is arbitrarily skewed relative to a plane which lies normal to the probe axis of rotation.
    Keywords: AERODYNAMICS
    Type: NASA-TM-105210 , E-6522 , NAS 1.15:105210
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: A means of performing routine transonic lift, drag, and moment analyses on hypersonic all-body and wing-body configurations were studied. The analysis method is to be used in conjunction with the Hypersonic Vehicle Optimization Code (HAVOC). A review of existing techniques is presented, after which three methods, chosen to represent a spectrum of capabilities, are tested and the results are compared with experimental data. The three methods consist of a wave drag code, a full potential code, and a Navier-Stokes code. The wave drag code, representing the empirical approach, has very fast CPU times, but very limited and sporadic results. The full potential code provides results which compare favorably to the wind tunnel data, but with a dramatic increase in computational time. Even more extreme is the Navier-Stokes code, which provides the most favorable and complete results, but with a very large turnaround time. The full potential code, TRANAIR, is used for additional analyses, because of the superior results it can provide over empirical and semi-empirical methods, and because of its automated grid generation. TRANAIR analyses include an all body hypersonic cruise configuration and an oblique flying wing supersonic transport.
    Keywords: AERODYNAMICS
    Type: NASA-CR-189854 , NAS 1.26:189854
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: Results of an experimental investigation of a symmetric crossing shock/turbulent boundary layer interaction are presented for a Mach number of 3.44 and deflections angles of 2, 6, 8 and 9 deg. The interaction strengths vary from weak to strong enough to cause a large region of separated flow. Measured quantities include surface static pressure and flowfield Pitot pressures. Pitot profiles in the plane of symmetry through the interaction region are shown for various deflection angles. Oil flow visualization and the results of a trace gas streamline tracking technique are also presented.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 92-2634
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-05-23
    Description: Jet engine induction systems investigations and relationship of air inlets, drag, airframe, pressure recovery, flow and interferences
    Keywords: AERODYNAMICS
    Type: NACA-RM-A55F16
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: The feasibility of using a contoured honeycomb model to generate a thick boundary layer in high-speed, compressible flow was investigated. The contour of the honeycomb was tailored to selectively remove momentum in a minimum of streamwise distance to create an artificially thickened turbulent boundary layer. Three wind tunnel experiments were conducted to verify the concept. Results indicate that this technique is a viable concept, especially for high-speed inlet testing applications. In addition, the compactness of the honeycomb boundary layer simulator allows relatively easy integration into existing wind tunnel model hardware.
    Keywords: AERODYNAMICS
    Type: NASA-TP-3142 , E-5660 , NAS 1.60:3142
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-28
    Description: The ALESEP program for the analysis of the inviscid/viscous interaction which occurs due to the presence of a closed laminar transitional separation bubble on an airflow is presented. The ALESEP code provides a iterative solution of the boundary layer equations expressed in an inverse formulation coupled to a Cauchy integral representation of the inviscid flow. This interaction analysis is treated as a local perturbation to a known solution obtained from a global airfoil analysis. Part of the required input to the ALESEP code are the reference displacement thickness and tangential velocity distributions. Special windward differencing may be used in the reversed flow regions of the separation bubble to accurately account for the flow direction in the discretization of the streamwise convection of momentum. The ALESEP code contains a forced transition model based on a streamwise intermittency function and a natural transition model based on a solution of the integral form of the turbulent kinetic energy equation. Instructions for the input/output, and program usage are presented.
    Keywords: AERODYNAMICS
    Type: NASA-CR-172310 , NAS 1.26:172310
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...