ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • ADP receptor  (1)
  • Russell's viper venom protease  (1)
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    The protein journal 2 (1983), S. 171-185 
    ISSN: 1573-4943
    Schlagwort(e): blood coagulation factor V ; snake venoms ; thrombocytin ; Russell's viper venom protease
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Chemie und Pharmazie
    Notizen: Abstract Thrombin activation of factor V constitutes an important feedback reaction in the regulation of coagulation. We therefore examined the details of activation of bovine factor V by two purified snake venom proteolytic enzymes, factor V-activating protease from Russell's viper venom and a platelet-aggregating enzyme, thrombocytin, fromBothrops atrox venom. The reactions were followed by changes in factor V coagulant activity, immunoelectrophoresis, and electrophoresis of radiolabeled factor V in sodium dodecylsulfate under reducing conditions. When factor V (M r 330,000) was exposed to factor V-activating protease at an enzyme-to-substrate ratio of 1:35 at 37°, cleavage occurred in 1 min, with formation of an intermediate (M r 250,000) coincident with a nine-fold activity increase. By 2 min, additional cleavage occurred, with disappearance of the intermediate and formation of two final fragments (M r 150,000 and 100,000) but no further change in coagulant activity. The concentration of these components remained unchanged from 5 to 15 min. Immunoelectrophoresis against antiserum directed against factor V confirmed cleavage of the molecule. Incubation of factor V with thrombocytin at 37° for 1 min resulted in a four-fold increase of factor V activity, with the formation of an intermediate (M r 220,000). By 2 min, a 7.5-fold activation was found, with a decline in the concentration of the intermediate; the predominant species hasM r =130,000. At 5 min the intermediate disappeared and a second, final fragment ofM r of ∼150,000 appeared without further change in coagulant activity. Immunoelectrophoresis again confirmed selective proteolysis. Thus, incubation of factor V-activating protease or thrombocytin with factor V results in different molecular alterations associated with an increase in the coagulant activity of this clotting factor.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    The protein journal 17 (1998), S. 429-451 
    ISSN: 1573-4943
    Schlagwort(e): Purinergic receptors ; ADP receptor ; platelets ; identification ; chemical modification ; cloning
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Chemie und Pharmazie
    Notizen: Abstract Platelet aggregation is important for maintaining normal hemostasis. However, aberrant platelet aggegation plays a major role in acute coronary artery diseases, myocardial infarction, unstable angina, and stroke. ADP is one of the earliest and most important platelet agonists. ADP induces platelet aggregation, shape change, secretion, influx and intracellular mobilization of Ca2+, and inhibition of the adenylyl cyclase stimulated by prostaglandins. Binding of ADP to purinergic receptor(s) is required for elicitation of the ADP-induced platelet responses. But the platelet ADP receptor(s) has not been purified, largely due to the unavailability of the reagents that can be used to selectively label the platelet ADP receptor. The ADP receptor responsible for the ADP-induced platelet aggregation and inhibition of stimulated adenylyl cyclase activity has not been cloned due to difficulties in screening responsive clones generated from a cDNA library. Since the purified ADP-receptor protein is not available, antibodies that can be used as alternative tools to purify the ADP receptor or screen the clones expressing the receptor could not be made. In addition, the problem may be compounded by the low copy number and the susceptibility of the receptor to proteolysis. Therefore, signal transduction mechanisms underlying biochemical transformations in ADP-induced platelet responses remain less well defined and/less well understood. In the past decade efforts have been made to identify a platelet ADP receptor(s) by photoaffinity as well as affinity labeling by the ADP-affinity analogs. More recently efforts have been directed to clone the platelet ADP receptors. These investigations, however, have not produced definite results. The purpose of this review is to examine the results obtained by the photoaffinity- and affinity-labeling investigations and cloning experiments to identify a platelet ADP receptor(s).
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...