ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Keywords: ACOUSTICS
    Type: AIAA Journal (ISSN 0001-1452); 30; 7, Ju; 1724-173
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: Two time domain methods for computing two dimensional steady-state acoustic disturbances propagating through internal subsonic viscous flow fields in the presence of variable area are investigated. The first method solves the Navier-Stokes equations for the combined steady and acoustic field together and subtracts the steady flow to obtain the acoustic field. The second method solves a system of perturbation equations to obtain the acoustic disturbances, making use of a separate steady flow computation as input to the system. In each case the periodic steady-state acoustic fluctuations are obtained numerically on a supercomputer using a second order unsplit explicit MacCormack predictor-corrector method. Results show that the first method is not very effective for computing acoustic disturbances of even moderate amplitude. It appears that more accurate steady flow algorithms are required for this method to succeed. On the other hand, linear and nonlinear acoustic disturbances extracted from the perturbation approach are shown to exhibit expected behavior for the problems considered. It is also found that inflow boundary conditions for an equivalent uniform duct can be successfully applied to a nonuniform duct to obtain steady-state acoustic disturbances.
    Keywords: ACOUSTICS
    Type: In: DGLR(AIAA Aeroacoustics Conference, 14th, Aachen, Germany, May 11-14, 1992, Proceedings. Vol. 1 (A93-19126 05-71); p. 428-437.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-18
    Keywords: ACOUSTICS
    Type: AIAA Journal (ISSN 0001-1452); 22; 1229-123
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: Several non-reflecting computational boundary conditions that meet certain criteria and have potential applications to duct acoustics are evaluated for their effectiveness. The same interior solution scheme, grid, and order of approximation are used to evaluate each condition. Sparse matrix solution techniques are applied to solve the matrix equation resulting from the discretization. Modal series solutions for the sound attenuation in an infinite duct are used to evaluate the accuracy of each non-reflecting boundary conditions. The evaluations are performed for sound propagation in a softwall duct, for several sources, sound frequencies, and duct lengths. It is shown that a recently developed nonlocal boundary condition leads to sound attenuation predictions considerably more accurate for short ducts. This leads to a substantial reduction in the number of grid points when compared to other non-reflecting conditions.
    Keywords: ACOUSTICS
    Type: NASA-TM-109118 , NAS 1.15:109118
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: A mathematical model containing the essential features embodied in the noise suppression of lined ejectors is presented. Although some simplification of the physics is necessary to render the model mathematically tractable, the current model is the most versatile and technologically advanced at the current time. A system of linearized equations and the boundary conditions governing the sound field are derived starting from the equations of fluid dynamics. A nonreflecting boundary condition is developed. In view of the complex nature of the equations, a parametric study requires the use of numerical techniques and modern computers. A finite element algorithm that solves the differential equations coupled with the boundary condition is then introduced. The numerical method results in a matrix equation with several hundred thousand degrees of freedom that is solved efficiently on a supercomputer. The model is validated by comparing results either with exact solutions or with approximate solutions from other works. In each case, excellent correlations are obtained. The usefulness of the model as an optimization tool and the importance of variable impedance liners as a mechanism for achieving broadband suppression within a lined ejector are demonstrated.
    Keywords: ACOUSTICS
    Type: NASA-TP-3425 , L-17283 , NAS 1.60:3425
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: A non-local boundary condition is formulated for acoustic waves in ducts without flow. The ducts are two dimensional with constant area, but with variable impedance wall lining. Extension of the formulation to three dimensional and variable area ducts is straightforward in principle, but requires significantly more computation. The boundary condition simulates a nonreflecting wave field in an infinite duct. It is implemented by a constant matrix operator which is applied at the boundary of the computational domain. An efficient computational solution scheme is developed which allows calculations for high frequencies and long duct lengths. This computational solution utilizes the boundary condition to limit the computational space while preserving the radiation boundary condition. The boundary condition is tested for several sources. It is demonstrated that the boundary condition can be applied close to the sound sources, rendering the computational domain small. Computational solutions with the new non-local boundary condition are shown to be consistent with the known solutions for nonreflecting wavefields in an infinite uniform duct.
    Keywords: ACOUSTICS
    Type: NASA-TM-109091 , NAS 1.15:109091
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: Tests were conducted to validate a two-dimensional shear-flow analytical model for determining the acoustic impedance of a liner test specimen in a grazing-incidence, grazing-flow environment. The tests were limited to a test specimen chosen to exhibit minimal effects of grazing flow so that the results obtained by using the shear-flow analytical model would be expected to match those obtained from normal-incidence impedance measurements. Impedances for both downstream and upstream sound propagation were generally consistent with those from normal-incidence measurements. However, sensitivity of the grazing-incidence impedance to small measurement or systematic errors in propagation constant varied dramatically over the range of test frequencies.
    Keywords: ACOUSTICS
    Type: NASA-TP-2679 , L-16203 , NAS 1.60:2679
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: The Helmholtz equation is solved within a three-dimensional rectangular duct with a nonlocal radiation boundary condition at the duct exit plane. This condition accurately models the acoustic admittance at an arbitrarily-located computational boundary plane. A linear system of equations is constructed with second-order central differences for the Helmholtz operator and second-order backward differences for both local admittance conditions and the gradient term in the nonlocal radiation boundary condition. The resulting matrix equation is large, sparse, and non-Hermitian. The size and structure of the matrix makes direct solution techniques impractical; as a result, a nonstationary iterative technique is used for its solution. The theory behind the nonstationary technique is reviewed, and numerical results are presented for radiation from both a point source and a planar acoustic source. The solutions with the nonlocal boundary conditions are invariant to the location of the computational boundary, and the same nonlocal conditions are valid for all solutions. The nonlocal conditions thus provide a means of minimizing the size of three-dimensional computational domains.
    Keywords: ACOUSTICS
    Type: NASA-TM-110174 , NAS 1.15:110174
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: A propagation model method for extracting the normal incidence impedance of an acoustic material installed as a finite length segment in a wall of a duct carrying a nonprogressive wave field is presented. The method recasts the determination of the unknown impedance as the minimization of the normalized wall pressure error function. A finite element propagation model is combined with a coarse/fine grid impedance plane search technique to extract the impedance of the material. Results are presented for three different materials for which the impedance is known. For each material, the input data required for the prediction scheme was computed from modal theory and then contaminated by random error. The finite element method reproduces the known impedance of each material almost exactly for random errors typical of those found in many measurement environments. Thus, the method developed here provides a means for determining the impedance of materials in a nonprogressirve wave environment such as that usually encountered in a commercial aircraft engine and most laboratory settings.
    Keywords: ACOUSTICS
    Type: NASA-TM-110160 , NAS 1.15:110160
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-28
    Description: A new approach for evolving two-dimensional nonlinear acoustic systems with flow to a steady state is presented. The approach is a two-step iterative method which is tested on a benchmark acoustic problem for which an exact analytical solution is available. Results are also calculated for a nonlinear acoustic problem for which an exact analytical solution is not known. Results indicate that the two-step method represents a powerful, efficient, and stable method for evolving two-dimensional acoustic systems to a steady state, and that the method is applicable to any number of spatial dimensions and to other hyperbolic systems. It is noted that for the benchmark problem only a single iteration on the method is required when the transient and steady-state field are of the same order of magnitude; however, four iterations are required when the steady-state field is several orders of magnitude smaller than the transient field. This method requires six iterations before achieving a steady state for the nonlinear test problem.
    Keywords: ACOUSTICS
    Type: AIAA PAPER 90-3946
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...