ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 82.65.Jv  (1)
Collection
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Applied physics 63 (1996), S. 523-531 
    ISSN: 1432-0630
    Keywords: 73.20.At ; 82.65.Jv ; 68.35.Fx ; 34.20.Cf
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract The interaction of adsorbates with metal surfaces is discussed. It is shown that the evanescent charge density produced by occupied sp derived surface states yields a considerable contribution to the Pauli repulsion experienced by adsorbate particles with a closed-shell electronic structure, e.g. rare-gases or molecules such as H2 or N2. For rare-gases this results in a reduction of the binding energy in the presence of occupied surface states, for molecules this gives rise to an additional contribution to the dissociation barrier. Suitable surface dopants are able to depopulate surface states and thereby to reduce the dissociation barrier. Such dopants can substantially promote catalytic reactions in which the dissociation from the gas phase or a physisorbed precursor is the rate limiting step. In contrast to closed-shell systems the bonding interaction for metal adsorbates on metal substrates is enhanced by occupied surface states. This leads to an extra diffusion barrier at steps, because the surface state amplitude drops to zero at upper step edges. The additional step-edge barrier, which is a kinetic hindrance for layer-by-layer growth, can be reduced by surface dopants depopulating the corresponding surface state. Such dopants promote layer-by-layer growth and act therefore as surfactants. It is concluded that the effect of promoters in catalysis and of surfactants in metal epitaxy is in part due to the same basic mechanism, namely the depopulation of surface states.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...