ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Applied physics 54 (1992), S. 227-230 
    ISSN: 1432-0649
    Keywords: 78.65H ; 81.60J
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Poly(tetrafluoroethylene) (PTFE) does not exhibit excimer laser etching behavior at conventional, e.g., single photon absorption, emissions of 193, 248, and 308 nm, due to the lack of polymer/photon interaction. This is not surprising since the electronic transitions available to the PTFE molecule are high energy and thus require short wavelength the radiation However, by incorporating a small quantity of material into the non-absorbing fluoropolymer matrix that interacts strongly with the emitted laser energy, e.g., a dopant, successful ablation, both in terms of etch rate and structuring quality occurs. Specifically, excimer laser ablation of PTFE films containing 5, 10, and 15% polyimide (wt/wt) as a dopant was achieved at 308 nm in a fluence range of 1 to 12 J/cm2. Ablation rates for the materials increased with increasing fluence and, at the polyimide levels investigated, varied inversely with dopant concentration. All compositions exhibited excellent structuring quality.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Applied physics 55 (1992), S. 488-493 
    ISSN: 1432-0649
    Keywords: 42.55.Gp ; 78.65 ; 81.60.Jw ; 82.50
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Clean ablation of poly(tetrafluoroethylene) (PTFE) at etch rates in excess of 7µm/pulse has been achieved with an excimer laser using 308nm radiation and a 25 ns pulse width. This was accomplished by doping the ultraviolet-transparent PTFE polymer with polyimide. Ablation rates were investigated as a function of fluence in the range from 1 to 12J/cm2 and dopant levels up to 15% (wt/wt). Results show that at a given fluence there exists an optimum absorption coefficient ⇌max, for which maximum ablation rates are achieved. The value of ⇌max was found to decrease with increasing fluence. The relationship between ⇌max and fluence was determined from existing ablation rate models and found to compare favorably with empirical results.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...