ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 551.46  (1)
  • Tropical variability
  • Ocean circulation
  • Transport variability
  • Denmark Strait
Collection
Keywords
Language
Years
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 3011-3029, doi:10.1175/JPO-D-15-0248.1.
    Description: Seasonal variability of the tropical Atlantic circulation is dominated by the annual cycle, but semiannual variability is also pronounced, despite weak forcing at that period. This study uses multiyear, full-depth velocity measurements from the central equatorial Atlantic to analyze the vertical structure of annual and semiannual variations of zonal velocity. A baroclinic modal decomposition finds that the annual cycle is dominated by the fourth mode and the semiannual cycle is dominated by the second mode. Similar local behavior is found in a high-resolution general circulation model. This simulation reveals that the annual and semiannual cycles of the respective dominant baroclinic modes are associated with characteristic basinwide structures. Using an idealized, linear, reduced-gravity model to simulate the dynamics of individual baroclinic modes, it is shown that the observed circulation variability can be explained by resonant equatorial basin modes. Corollary simulations of the reduced-gravity model with varying basin geometry (i.e., square basin vs realistic coastlines) or forcing (i.e., spatially uniform vs spatially variable wind) show a structural robustness of the simulated basin modes. A main focus of this study is the seasonal variability of the Equatorial Undercurrent (EUC) as identified in recent observational studies. Main characteristics of the observed EUC including seasonal variability of transport, core depth, and maximum core velocity can be explained by the linear superposition of the dominant equatorial basin modes as obtained from the reduced-gravity model.
    Description: This study was supported by the Deutsche Forschungsgemeinschaft as part of the Sonderforschungsbereich 754 (SFB754) ‘‘Climate–Biogeochemistry Interactions in the Tropical Ocean’’ and through several research cruises with R/V Meteor, R/V Maria S. Merian, andR/VL’Atalante by the German Federal Ministry of Education and Research as part of the cooperative projects RACE (03F0605B) and SACUS (03G0837A) and by European Union 7th Framework Programme (FP7 2007–13) under Grant Agreement 603521 PREFACE project.
    Keywords: Atlantic Ocean ; Ocean circulation ; In situ oceanic observations ; Ocean models ; Seasonal cycle ; Tropical variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-10-13
    Description: The Atlantic Subtropical Cells (STCs) are shallow wind-driven overturning circulations connecting the tropical upwelling areas to the subtropical subduction regions. In both hemispheres, they are characterized by equatorward transport at thermocline level, upwelling at the equator, and poleward Ekman transport in the surface layer. This study uses recent data from Argo floats complemented by ship sections at the western boundary as well as reanalysis products to estimate the meridional water mass transports and to investigate the vertical and horizontal structure of the STCs from an observational perspective. The seasonally varying depth of meridional velocity reversal is used as the interface between the surface poleward flow and the thermocline equatorward flow. The latter is bounded by the 26.0 kg m−3 isopycnal at depth. We find that the thermocline layer convergence is dominated by the southern hemisphere water mass transport (9.0 ± 1.1 Sv from the southern hemisphere compared to 2.9 ± 1.3 Sv from the northern hemisphere) and that this transport is mostly confined to the western boundary. Compared to the asymmetric convergence at thermocline level, the wind-driven Ekman divergence in the surface layer is more symmetric, being 20.4 ± 3.1 Sv between 10°N and 10°S. The net poleward transports (Ekman minus geostrophy) in the surface layer concur with values derived from reanalysis data (5.5 ± 0.8 Sv at 10°S and 6.4 ± 1.4 Sv at 10°N). A diapycnal transport of about 3 Sv across the 26.0 kg m−3 isopycnal is required in order to maintain the mass balance of the STC circulation.
    Keywords: 551.46 ; Atlantic Subtropical Cells ; wind-driven overturning circulations
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 2830–2846, doi:10.1002/2016JC012158.
    Description: The upstream sources and pathways of the Denmark Strait Overflow Water and their variability have been investigated using a high-resolution model hindcast. This global simulation covers the period from 1948 to 2009 and uses a fine model mesh (1/20°) to resolve mesoscale features and the complex current structure north of Iceland explicitly. The three sources of the Denmark Strait Overflow, the shelfbreak East Greenland Current (EGC), the separated EGC, and the North Icelandic Jet, have been analyzed using Eulerian and Lagrangian diagnostics. The shelfbreak EGC contributes the largest fraction in terms of volume and freshwater transport to the Denmark Strait Overflow and is the main driver of the overflow variability. The North Icelandic Jet contributes the densest water to the Denmark Strait Overflow and shows only small temporal transport variations. During summer, the net volume and freshwater transports to the south are reduced. On interannual time scales, these transports are highly correlated with the large-scale wind stress curl around Iceland and, to some extent, influenced by the North Atlantic Oscillation, with enhanced southward transports during positive phases. The Lagrangian trajectories support the existence of a hypothesized overturning loop along the shelfbreak north of Iceland, where water carried by the North Icelandic Irminger Current is transformed and feeds the North Icelandic Jet. Monitoring these two currents and the region north of the Iceland shelfbreak could provide the potential to track long-term changes in the Denmark Strait Overflow and thus also the AMOC.
    Description: Norwegian Research Council Grant Number: 231647
    Description: 2017-10-04
    Keywords: North Atlantic ; Denmark Strait ; Overflow ; Transport variability ; Overturning
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...