ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 551.46  (3)
  • Total Exchange Flow  (2)
  • Streamflow
  • 1
    Publikationsdatum: 2021-07-22
    Beschreibung: The Total Exchange Flow analysis framework computes consistent bulk values quantifying the estuarine exchange flow using salinity coordinates since salinity is the main contributor to density in estuaries and the salinity budget is entirely controlled by the exchange flow. For deeper and larger estuaries temperature may contribute equally or even more to the density. That is why we included potential temperature as a second coordinate to the Total Exchange Flow analysis framework, which allows gaining insights in the potential temperature-salinity structure of the exchange flow as well as to compute consistent bulk potential temperature and therefore heat exchange values with the ocean. We applied this theory to the exchange flow of the Persian Gulf, a shallow, semienclosed marginal sea, where dominant evaporation leads to the formation of hypersaline and dense Gulf water. This drives an inverse estuarine circulation which is analyzed with special interest on the seasonal cycle of the exchange flow. The exchange flow of the Persian Gulf is numerically simulated with the General Estuarine Transport Model from 1993 to 2016 and validated against observations. Results show that a clear seasonal cycle exists with stronger exchange flow rates in the first half of the year. Furthermore, the composition of the outflowing water is investigated using passive tracers, which mark different surface waters. The results show that in the first half of the year, most outflowing water comes from the southern coast, while in the second half most water originates from the northwestern region.
    Schlagwort(e): 551.46 ; Persian Gulf ; Total Exchange Flow ; inverse estuary ; General Estuarine Transport Model ; estuarine circulation
    Sprache: Englisch
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2021-07-23
    Beschreibung: The hydrodynamics in estuaries is mainly governed by the competition between a horizontal density gradient, friction, and wind stress. The sensitivity of the estuarine exchange flow to the wind stress increases in the absence of tides, which is investigated here using the example of the weakly tidal Warnow river estuary in the southwestern Baltic Sea—the mouth of which is characterized by strongly varying salinities of 8 to 20 g kg−1. The interaction between a volatile salinity gradient and along-estuary wind forcing is found to cause temporary inversions of the estuarine circulation. Despite the highly dynamic conditions, the applicability of recent theories for isohaline mixing, using the framework of Total Exchange Flow, and the strength of the exchange flow, using a non-dimensional parameter space, could be confirmed. By analyzing salinity fluxes at the mouth of the estuary, a mixing completeness of 84% was calculated for the estuary. Furthermore, inversion of estuarine circulation was typically found for a local Wedderburn number (ratio of non-dimensional wind stress to non-dimensional horizontal density gradient) exceeding 0.33, indicating a high sensitivity to along-estuary wind.
    Schlagwort(e): 551.46 ; estuarine circulation ; salt mixing ; wind straining ; Total Exchange Flow
    Sprache: Englisch
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2021-07-04
    Beschreibung: Processes of stratification and destratification in the German Bight region of fresh water influence (ROFI) are investigated following an extreme river discharge event in June 2013. For this purpose, a high‐resolution baroclinic ocean model is set up and validated against field data. The model results are used to study the temporal and spatial variability of stratification and the duration of persistent stratification in 2013. The relevant processes affecting stratification are investigated by analyzing the potential energy anomaly budget, with a focus on mixing and tidal straining. It is shown that the stratification in the German Bight is highly affected by the spring‐neap tidal cycle, with generally less stratification at spring tides due to dominant tidal mixing. It is also shown that the location of the river plume can modify this pattern. During spring tides, if the river plume is confined to the eastern region, stratification decreases significantly, as expected, due to the dominance of mixing over tidal straining. On the other hand, if the river plume moves toward deeper regions at spring tides, strong tidal straining becomes present. In this condition, mixing is weak, and the dominant tidal straining results in persistent stratification.
    Beschreibung: Key Points: Processes impacting the German Bight stratification are investigated using a high‐resolution baroclinic model. The position of the river plume highly affects the contribution of tidal straining and mixing to changes in stratification. Strong tidal straining can result in persistent stratification even during spring tides.
    Beschreibung: Bundesministerium für Bildung und Forschung (BMBF) http://dx.doi.org/10.13039/501100002347
    Beschreibung: German Research Foundation http://dx.doi.org/10.13039/501100001659
    Beschreibung: German Environment Agency http://dx.doi.org/10.13039/501100010809
    Schlagwort(e): 551.46 ; stratification ; tidal‐straining ; mixing ; extreme river discharge ; numerical model ; German Bight ROFI
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 1375-1384, doi:10.1175/JPO-D-17-0266.1.
    Beschreibung: The relationship between net mixing and the estuarine exchange flow may be quantified using a salinity variance budget. Here “mixing” is defined as the rate of destruction of volume-integrated salinity variance, and the exchange flow is quantified using the total exchange flow. These concepts are explored using an idealized 3D model estuary. It is shown that in steady state (e.g., averaging over the spring–neap cycle) the volume-integrated mixing is approximately given by Mixing ≅ SinSoutQr, where Sin and Sout are the representative salinities of in- and outflowing layers at the mouth and Qr is the river volume flux. This relationship provides an extension of the familiar Knudsen relation, in which the exchange flow is diagnosed based on knowledge of these same three quantities, quantitatively linking mixing to the exchange flow.
    Beschreibung: The work was supported by the National Science Foundation through Grants OCE-1736242 to PM and OCE-1736539 to WRG and by the German Research Foundation through Grants TRR 181 and GRK 2000 to HB.
    Schlagwort(e): Coastal flows ; Diapycnal mixing ; Ocean dynamics ; Streamflow ; Diagnostics ; Isopycnal coordinates
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...