ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 551  (1)
  • anoxia  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of paleolimnology 24 (2000), S. 277-291 
    ISSN: 1573-0417
    Keywords: varves ; anoxia ; sediments ; Soppensee ; carbon cycle ; oxygen cycle
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Notes: Abstract We analyzed seasonally aggregated observations of temperature, conductivity, dissolved oxygen and dissolved inorganic carbon from Soppensee (District of Lucerne, Switzerland) for the yrs 1980 to 1993. Holomictic Soppensee is characterized by a strong summer stratification with a thin epilimnion separated from an anoxic hypolimnion by a strong pycnocline formed by thermal and chemical gradients. A vertical one-dimensional model was developed to simulate the observed seasonal cycles of carbon and oxygen. The processes of net community production, mineralization of organic matter, precipitation and dissolution of calcite, gas exchange, in- and outflow, sedimentation and vertical eddy diffusion are included. According to the model, the annual net community production is estimated to about 110 g C m-2 yr-1 and the annual net primary production to about 330 to 440 g C m-2 yr-1, which is a typical value for eutrophic lakes. A mass balance of the carbon cycle indicates that most of the inflow comes from groundwater which is super-saturated with respect to atmospheric CO2. Therefore the surface waters exhibit a large capacity for calcite precipitation. The results of the model are used to constrain the conditions that favor the formation of varved sediments in Soppensee during thousands of yrs. Model calculations show that the deep waters would still turn anoxic even if the sedimentation rate of organic matter were decreased to 25%. Several physical factors such as biogenic stabilization of the deep waters due to calcite dissolution and low input of wind energy are responsible for the long term anoxia in Soppensee.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-04-22
    Description: The seasonal cycle represents one of the largest signals of dissolved inorganic carbon (DIC) in the ocean, yet these seasonal variations are not well established at a global scale. Here, we present the Mapped Observation‐Based Oceanic DIC (MOBO‐DIC) product, a monthly DIC climatology developed based on the DIC measurements from GLODAPv2.2019 and a two‐step neural network method to interpolate and map the measurements. MOBO‐DIC extends from the surface down to 2,000 m and from 65°N to 65°S. We find the largest seasonal amplitudes of surface DIC in the northern high‐latitude Pacific (∼30 to 〉50 μmol kg−1). Surface DIC maxima occur in hemispheric spring and minima in fall, driven by the input of DIC into the upper ocean by mixing during winter, and net community production (NCP) driven drawdown of DIC over summer. The seasonal pattern seen at the surface extends to a nodal depth of 〈50 m in the tropics and several hundred meters in the subtropics. Below the nodal depth, the seasonal cycle of DIC has the opposite phase, primarily owing to the seasonal accumulation of DIC stemming from the remineralization of sinking organic matter. The well‐captured seasonal drawdown of DIC in the mid‐latitudes (23° to 65°) allows us to estimate the spring‐to‐fall NCP in this region. We find a spatially relatively uniform spring‐to‐fall NCP of 1.9 ± 1.3 mol C m−2 yr−1, which sums to 3.9 ± 2.7 Pg C yr−1 over this region. This corresponds to a global spring‐to‐fall NCP of 8.2 ± 5.6 Pg C yr−1.
    Description: Key Points We present a near‐global monthly DIC climatology (MOBO‐DIC) based on ship observations and a two‐step neural network Seasonal surface DIC amplitudes range from 0 to more than 50 μmol kg−1 MOBO‐DIC yields a spring‐to‐fall NCP in the euphotic zone of the mid‐latitudes of 3.9 ± 2.7 Pg C yr−1
    Description: European Community's Horizon 2020 Project
    Description: International Max Planck Research School on Earth System Modelling (IMPRS‐ESM)
    Keywords: 551 ; DIC ; seasonal variability ; neural networks ; SOM‐FFN ; monthly climatology ; NCP
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...