ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 551  (1)
  • Marine Geosciences and Applied Geophysics  (1)
  • 1
    Publication Date: 2021-09-15
    Description: New marine geophysical data acquired across the partly ice-covered northern East Greenland continental margin highlight a complex interaction between tectonic and magmatic events. Breakup-related lava flows are imaged in reflection seismic data as seaward dipping reflectors, which are found to decrease in size both northward and southward from a central point at 75°N. We provide evidence that the magnetic anomaly pattern in the shelf area is related to volcanic phases and not to the presence of oceanic crust. The remnant magnetization of the individual lava flows is used to deduce a relative timing of the emplacement of the volcanic wedges. We find that the seaward dipping reflectors have been emplaced over a period of 2–4 Ma progressively from north to south and from landward to seaward. The new data indicate a major post-middle Eocene magmatic phase around the landward termination of the West Jan Mayen Fracture Zone. This post-40-Ma volcanism likely was associated with the progressive separation of the Jan Mayen microcontinent from East Greenland. The breakup of the Greenland Sea started at several isolated seafloor spreading cells whose location was controlled by rift structures and led to the present-day segmentation of the margin. The original rift basins were subsequently connected by steady-state seafloor spreading that propagated southward, from the Greenland Fracture Zone to the Jan Mayen Fracture Zone.
    Keywords: 551 ; 559 ; NE Greenland ; seismic reflection ; seaward dipping reflectors ; continent-ocean transition ; rifting ; Greenland Sea
    Language: English
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-06-23
    Description: Deep sea pockmarks underlain by chimney-like or pipe structures that contain methane hydrate are abundant along the Norwegian continental margin. In such hydrate provinces the interaction between hydrate formation and fluid flow has significance for benthic ecosystems and possibly climate change. The Nyegga region, situated on the western Norwegian continental slope, is characterized by an extensive pockmark field known to accommodate substantial methane gas hydrate deposits. The aim of this study is to detect and delineate both the gas hydrate and free gas reservoirs at one of Nyegga's pockmarks. In 2012, a marine controlled-source electromagnetic (CSEM) survey was performed at a pockmark in this region, where high-resolution 3-D seismic data were previously collected in 2006. 2-D CSEM inversions were computed using the data acquired by ocean bottom electrical field receivers. Our results, derived from unconstrained and seismically constrained CSEM inversions, suggest the presence of two distinctive resistivity anomalies beneath the pockmark: a shallow vertical anomaly at the underlying pipe structure, likely due to gas hydrate accumulation, and a laterally extensive anomaly attributed to a free gas zone below the base of the gas hydrate stability zone. This work contributes to a robust characterization of gas hydrate deposits within subseafloor fluid flow pipe structures.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...