ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 550 - Earth sciences  (3)
  • Coordinating Committee  (1)
Collection
Keywords
Years
  • 1
    Publication Date: 2004
    Keywords: CC 4 ; Coordinating Committee ; Continental Drilling ; ICDP
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Nuclear Instruments and Methods in Physics Research / B
    Publication Date: 2020-02-12
    Description: As part of understanding and reconstructing our climate history it is important to investigate the link between climate and solar activity. Ice cores and ocean sediments have provided information on a range of timescales on atmospheric 10Be production, which is a proxy for past solar activity due to its cosmogenic nature of production. We here present results from the first, to our knowledge, multi-centennial and annual resolution study of 10Be in varved lake sediments. Varves were sampled over an interval covering the period 1468–2006 CE in sediment cored from Lake Lehmilampi in eastern Finland. The measured concentrations were converted into annual 10Be deposition rates by using the weights of dried samples as an estimation of sedimentation rates and scaling the result from sampling to catchment area size. We compare the lake catchment 10Be deposition rates to those derived from the Greenlandic ice cores NGRIP and Dye-3 along with past solar activity. Sediment 10Be concentrations range 2.1–17.6 × 108 atoms g−1. The high end of this range is represented by a limited number of samples, and the average is near the lower end at 4.1 × 108 atoms g−1. The deposition rates range 0.5–3.9 × 106 atoms cm−2 year−1, with an average of 1.8 × 106 atoms cm−2 year−1 (0.057 atoms cm−2 s−1). We note higher 10Be deposition during the Spörer (∼1415–1535 CE) and Maunder (∼1645–1715 CE) solar minima, and also at the onset of the Dalton (∼1790–1830 CE) minimum. Equally high 10Be values in the 1840s and lower deposition during the Dalton minimum are not consistent with contemporaneous solar activity. Although this may in part be a result of incomplete measurements in the 19th century, it also shows the complexity of deposition and the intricacy of reconstructing past solar activity from sediment 10Be data. A comparison with ice core data reveals particularly good agreement between sediment and Dye-3 10Be flux around 1500–1750 CE.
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-12
    Description: Large changes in solar ultraviolet radiation can indirectly affect climate by inducing atmospheric changes. Specifically, it has been suggested that centennial-scale climate variability during the Holocene epoch was controlled by the Sun. However, the amplitude of solar forcing is small when compared with the climatic effects and, without reliable data sets, it is unclear which feedback mechanisms could have amplified the forcing. Here we analyse annually laminated sediments of Lake Meerfelder Maar, Germany, to derive variations in wind strength and the rate of 10Be accumulation, a proxy for solar activity, from 3,300 to 2,000 years before present. We find a sharp increase in windiness and cosmogenic 10Be deposition 2,759  ±  39 varve years before present and a reduction in both entities 199  ±  9 annual layers later. We infer that the atmospheric circulation reacted abruptly and in phase with the solar minimum. A shift in atmospheric circulation in response to changes in solar activity is broadly consistent with atmospheric circulation patterns in long-term climate model simulations, and in reanalysis data that assimilate observations from recent solar minima into a climate model. We conclude that changes in atmospheric circulation amplified the solar signal and caused abrupt climate change about 2,800 years ago, coincident with a grand solar minimum.
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-12
    Description: Annually resolved terrestrial 10Be archives other than those in polar ice sheets are heretofore unexplored sources of information about past solar activity and climate. Until now, it has proven difficult to find natural archives that have captured and retained a 10Be production signal, and that allow for annual sampling and contain sufficient 10Be for AMS measurement. We report the first annually resolved record of 10Be in varved lake sediments. The record comes from Lake Lehmilampi, eastern Finland, which lies at 63°37′N, 29°06′E, 95.8 m a.s.l. The focus on the last 100 years provided an unprecedented opportunity to compare sediment 10Be data with annual ice core, neutron monitor and sunspot number data. Results indicate successful recovery of 10Be atoms from as little as 20 mg sediment. Sediment 10Be accumulation rates suggest control by solar activity, manifested as a reflection of the 11-year Schwabe solar cycle and its amplitude variations throughout the investigated period. These results open the possibility of using varved lake sediment 10Be records as a new proxy for solar activity, thus providing a new approach for synchronization of paleoclimate events worldwide.
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...