ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-02-12
    Description: On 12 September 2007, an Mw 8.4 earthquake occurred within the southern section of the Mentawai segment of the Sumatra subduction zone, where the subduction thrust had previously ruptured in 1833 and 1797. Traveltime data obtained from a temporary local seismic network, deployed between December 2007 and October 2008 to record the aftershocks of the 2007 event, was used to determine two-dimensional (2-D) and three-dimensional (3-D) velocity models of the Mentawai segment. The seismicity distribution reveals significant activity along the subduction interface and within two clusters in the overriding plate either side of the forearc basin. The downgoing slab is clearly distinguished by a dipping region of high Vp (8.0 km/s), which can be a traced to ∼50 km depth, with an increased Vp/Vs ratio (1.75 to 1.90) beneath the islands and the western side of the forearc basin, suggesting hydrated oceanic crust. Above the slab, a shallow continental Moho of less than 30 km depth can be inferred, suggesting that the intersection of the continental mantle with the subducting slab is much shallower than the downdip limit of the seismogenic zone despite localized serpentinization being present at the toe of the mantle wedge. The outer arc islands are characterized by low Vp (4.5–5.8 km/s) and high Vp/Vs (greater than 2.0), suggesting that they consist of fluid saturated sediments. The very low rigidity of the outer forearc contributed to the slow rupture of the Mw 7.7 Mentawai tsunami earthquake on 25 October 2010.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-12
    Description: A series of linked marine and land studies have recently targeted the Sumatra subduction zone, focusing on the 2004 and 2005 plate boundary earthquake ruptures in Indonesia. A collaborative research effort by scientists from the United Kingdom (UK Sumatra Consortium), Indonesia, United States, France, and Germany is focusing on imaging the crustal structure of the margin to examine controls on along-strike and updip earthquake rupture propagation. The fundamental science objective is to examine how margin architecture and properties control earthquake rupture location and propagation.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-12
    Description: The Maule earthquake of 27th February 2010 (Mw=8.8) affected ~500 km of the Nazca-South America plate boundary in south-central Chile producing spectacular crustal deformation. Here, we present a detailed estimate of static coseismic surface offsets as measured by survey and continuous GPS, both in near- and farfield regions. Earthquake slip along the megathrust has been inferred from a joint inversion of our new data together with published GPS, InSAR, and land-level changes data using Green's functions generated by a spherical finite-element model with realistic subduction zone geometry. The combination of the data sets provided a good resolution, indicating that most of the slip was well resolved. Coseismic slip was concentrated north of the epicenter with up to 16 m of slip, whereas to the south it reached over 10m within two minor patches. A comparison of coseismic slip with the slip deficit accumulated since the last great earthquake in 1835 suggests that the 2010 event closed a mature seismic gap. Slip deficit distribution shows an apparent local overshoot that highlight cycle-to-cycle variability,which has to be taken into accountwhen anticipating future events from interseismic observations. Rupture propagation was obviously not affected by bathymetric features of the incoming plate. Instead, splay faults in the upper plate seem to have limited rupture propagation in the updip and along-strike directions. Additionally, we found that along-strike gradients in slip are spatially correlated with geometrical inflections of the megathrust. Our study suggests that persistent tectonic features may control strain accumulation and release along subduction megathrusts.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-12
    Description: The Sumatran margin suffered three great earthquakes in recent years (Aceh-Andaman 26 December 2004 Mw = 9.1, Nias 28 March 2005 Mw = 8.7, Bengkulu 12 September 2007 Mw = 8.5). Here we present local earthquake data from a dense, amphibious local seismic network covering a segment of the Sumatran margin that last ruptured in 1797. The occurrence of forearc islands along this part of the Sumatran margin allows the deployment of seismic land-stations above the shallow part of the thrust fault. In combination with ocean bottom seismometers this station geometry provides high quality hypocentre location for the updip end of the seismogenic zone in an area where geodetic data are also available. In this region, the Investigator Fracture Zone (IFZ), which consists of 4 sub-ridges, is subducted below the Sunda plate. This topography appears to influence seismicity at all depth intervals. A well-defined linear streak of seismicity extending from 80 to 200 km depth lies along the prolongation of closely spaced IFZ sub-ridges. More intermediate depth seismicity is located to the southeast of this string of seismicity and is related to subducted rough oceanic seafloor. The plate interface beneath Siberut Island which ruptured last in 1797 is characterised by almost complete absence of seismicity.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-12
    Description: The combination of the Sunda megathrust and the (strike-slip) Sumatran Fault (SF) represents a type example of slip-partitioning. However, superimposed on the SF are geometrical irregularities that disrupt the local strain field. The largest such feature is in central Sumatra where the SF splits into two fault strands up to 35 km apart. A dense local network was installed along a 350 km section around this bifurcation, registering 1016 crustal events between April 2008 and February 2009. 528 of these events, with magnitudes between 1.1 and 6.0, were located using the double-difference relative location method. These relative hypocentre locations reveal several new features about the crustal structure of the SF. Northwest and southeast of the bifurcation, where the SF has only one fault strand, seismicity is strongly focused below the surface trace, indicating a vertical fault that is seismogenic to ~15 km depth. By contrast intense seismicity is observed within the bifurcation, displaying streaks in plan and cross-section that indicate a complex system of faults bisecting the bifurcation. In combination with analysis of topography and focal mechanisms, we propose that the bifurcation is a strike-slip duplex system with complex faulting between the two main fault branches.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-02-12
    Description: We use traveltime data of local earthquakes and controlled sources observed by a large, temporary, amphibious seismic network to reveal the anatomy of the southcentral Chilean subduction zone (37–39°S) between the trench and the magmatic arc. At this location the giant 1960 earthquake (M = 9.5) nucleated and ruptured almost 1000 km of the subduction megathrust. For the three-dimensional tomographic inversion we used 17,148 P wave and 10,049 S wave arrival time readings from 439 local earthquakes and 94 shots. The resolution of the tomographic images was explored by analyzing the model resolution matrix and conducting extensive numerical tests. The downgoing lithosphere is delineated by high seismic P wave velocities. High v p/v s ratio in the subducting slab reflects hydrated oceanic crust and serpentinized uppermost oceanic mantle. The subducting oceanic crust can be traced down to a depth of 80 km, as indicated by a low velocity channel. The continental crust extends to approximately a 50-km depth near the intersection with the subducting plate. This suggests a wide contact zone between continental and oceanic crust of about 150 km, potentially supporting the development of large asperities. Eastward the crustal thickness decreases again to a minimum of about a 30-km depth. Relatively low v p/v s at the base of the forearc does not support a large-scale serpentinization of the mantle wedge. Offshore, low v p and high v p/v s reflect young, fluid-saturated sediments of forearc basins and the accretionary prism.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-02-12
    Description: Providing quantitative microzonation results that can be taken into account in urban land-use plans is a challenging task that requires collaborative efforts between the seismological and engineering communities. In this study, starting from the results obtained by extensive geophysical and seismological investigations, we propose and apply an approach to the Gubbio basin (Italy) that can be easily implemented for cases of moderate-to-low ground motion and that takes into account not only simple 1D, but also more complicated 3D effects. With this method, the sites inside the basin are classified by their fundamental resonance frequencies, estimated from the horizontal-to-vertical spectral ratio applied to noise recordings (HVNSR). The correspondence between estimates of the fundamental frequency from this method and those derived from earthquake recordings was verified at several calibration sites. The amplification factors used to correct the response spectra are computed by the ratio between the response spectra at sites within the basin and the response spectra at a hard-rock site using data from two seismic transects. Empirical amplification functions are then assigned to the fundamental frequencies after applying an interpolation technique. The suitability of the estimated site-specific correction factors for response spectra was verified by computing synthetic response spectra for stations within the basin, starting from the synthetic recording at a nearby rock station, and comparing them with observed ones.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-02-12
    Description: Multibeam bathymetry revealed the occurrence of numerous craterlike depressions, so-called pockmarks, on the sea floor of the Hammerfest Basin and the Loppa High, south-western Barents Sea. To investigate whether these pockmarks are related to ongoing gas seepage, microbial processes associated with methane metabolism were analyzed using geochemical, biogeochemical and microbiological techniques. Gravity cores were collected along transects crossing individual pockmarks, allowing a direct comparison between different locations inside (assumed activity center), on the rim, and outside of a pockmark (reference sites). Concentrations of hydrocarbons in the sediment, particularly methane, were measured as headspace (free) gas, and in the occluded and adsorbed gas fraction. Down to a depth of 2.6 m below sea floor (mbsf) sulfate reduction rates were quantified by radiotracer incubations. Concentrations of dissolved sulfate in the porewater were determined as well. Neither the sulfate profiles nor the gas measurements show any evidence of microbial activity or active fluid venting. Methane concentrations and sulfate reduction rates were extremely low or even below the detection limit. The results show that the observed sediment structures are most likely paleo-pockmarks, their formation probably occurred during the last deglaciation.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-02-12
    Description: On 2001 May 7, following unintentional water injection, a moderate size induced earthquake struck the Ekofisk oil field, North Sea. Despite of its relatively moderate magnitude, clear low-frequency waveforms could be recorded up to more than 2000 km epicentral distance, suggesting a slow rupture at very shallow depth and wave propagation through low-velocity shallow structures. The event poses a rare opportunity to constrain rupture velocity, duration and rise time of a superficial M 〉 4 event occurring on a horizontal plane in soft, water-saturated sediments. Two previous studies discussed the earthquake point source finding vertical dip-slip focal mechanisms with opposite senses of P and T axes. A further investigation was thus required to provide a basis for a deeper discussion of the failure dynamics. We significantly improve the used data set, test different earth models and derive a point source as well as a kinematic rupture model. We carefully discuss parameter uncertainties and effects related to shallow sources and wave propagation through different crustal structures to resolve the previous controversy. We additionally provide a kinematic rupture model, based on apparent source times derived from Rayleigh and Love waves. The waveforms resolve a predominant unilateral rupture along a horizontal plane at about 2 km depth. We derive an unusually slow rupture, consequence of a slow rupture velocity of about 500 m s –1 and a long rise time of about 7 s. An independent modelling of GPS- based static displacements allows to confirm the focal mechanism polarity and to locate the centroid at the eastern side of the field, resulting in a much larger seismic moment in comparison with dynamic seismic moment. The rupture directivity is confirmed by the relative location of the centroid with respect to the epicentre, which is set at the site of water injection.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...