ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-09-18
    Description: This paper describes a high resolution multi-technique non invasive approach in which three different techniques (photogrammetric, terrestrial laser scanner and acoustic tomography) are integrated with petrographic data for a detailed characterization of rock samples. To study stone materials both outcropping and in depth, with appropriately prepared samples one can make as many measurements as necessary with different techniques. Moreover, some characterization analyses are destructive and there is a limit on the number of samples that can be sacrificed. The samples need to be carefully selected to ensure they are representative of the rock types under study and significant in different fields (e.g. analysis of the degradation of stone building materials, analysis of aquifer, study of natural reservoirs). As a result, analysis made by the above non invasive techniques integrated with petrographical data on the same materials becomes an indispensable source of data. For the characterization of non-invasive rock samples we started a computation of high resolution 3D models of two samples of a different nature, a comenditic pyroclastic rock and a Pietra Forte carbonate rock, using the terrestrial laser scanning (TLS) methodology and digital photogrammetry. Data were collected using a Leica HDS6200 TLS and a Nikon D-300 digital Reflex camera with the necessary conditions of the highest resolution modality, small incidence angles and a high dynamic range (HDR) in the case of digital images. The resulting clouds and images were processed by specific software using a multi-step procedure which starts with the data input and filtering with elimination of defective points, manual data editing, automatic filtering, raw and fine registration with an iterative closest point (ICP) algorithm in a bundle adjustment modality and successive aggregation of all clouds in high resolution 3D models. Finally, the resulting radiometric information available, such as reflectivity maps, high resolution (HR) photogrammetry textured models and patterns of geometrical residuals, were interpreted in order to locate and underline materials anomalies and differences in composition together with a comparison of reflectance and natural colour anomalies with the roughness of surface materials. Starting with the accurate 3D reconstruction from previous techniques, an acoustic tomography on each rock sample was carefully planned and carried out. Travel time of longitudinal elastic waves were measured along a large number of measurement paths between stations located on the perimeter of the investigated samples. Each measurement point was alternatively used as transmitter and receiver. Inversion techniques were used to obtain a map of the distribution of the longitudinal wave velocity across the sections, thanks to specific software exploiting appropriate reconstruction algorithms. Ultrasonic tomography proved an effective tool in detecting internal defects and heterogeneity of the samples, and led to their fine characterization in terms of elastic-mechanical properties. Finally, the integration of the above three geophysical non invasive techniques with petrographical data represents a powerful method for the definition of the heterogeneity of the rocks at a different scale and for calibrating in situ measurements.
    Description: Published
    Description: Vienna | Austria
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Keywords: Terrestrial laser scanner ; SfM Photogrammetry ; 3D ultrasonic tomography ; stone samples ; Terrestrial laser scanner ; SfM Photogrammetry ; 3D ultrasonic tomography ; stone samples ; Cultural Heritage ; Ancient Buildings
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-11-25
    Description: Abstract: This study presents the integrated application of a few non-destructive techniques, i.e., Close Range Photogrammetry (CRP), and low frequency (24 kHz) ultrasonic tomography complemented by petrographical analysis. The aim here is to assess the conservation state of a Carrara marble column in the Basilica of San Saturnino, which is part of a V-VI century Palaeo Christian complex in the city of Cagliari (Italy). The high resolution 3D modelling of the studied artifact was computed starting from the integration of proximal sensing techniques, such as CRP based on the Structure from Motion (SfM) technique, which provided information on the geometrical anomalies and reflectivity of the investigated marble column surface. The inner parts of the studied body were inspected successfully in a non-invasive way by computing the velocity pattern of the ultrasonic signal through the investigated materials, using 3D ultrasonic tomography. The latter was optimally designed based on the 3D CRP analysis and the locations of the source and receiver points were detected as accurately as possible. The integrated application of in situ CRP and ultrasonic techniques provided a full 3D high resolution model of the investigated artifact, which made it possible to evaluate the material characteristics and its degradation state, affecting mainly the shallower parts of the column. The 3D visualisation improves the efficiency, accuracy, and completeness of the interpretative process of data of a different nature in quite easily understood displays, as well as the communication between different technicians.
    Description: Published
    Description: 1114
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Keywords: close range photogrammetry ; 3D ultrasonic tomography ; petrographic analyses ; marble ; degradation ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-03-20
    Description: Here, an avant-garde study of three ancient Doric columns of the precious, ancient Romanesque church of Saints Lorenzo and Pancrazio in the historical town center of Cagliari (Italy) is presented based on the integrated application of different non-destructive testing methods. The limitations of each methodology are overcome by the synergistic application of these methods, affording an accurate, complete 3D image of the studied elements. Our procedure begins with a macroscopic in situ analysis to provide a preliminary diagnosis of the conditions of the building materials. The next step is laboratory tests, in which the porosity and other textural characteristics of the carbonate building materials are studied by optical and scanning electron microscopy. After this, a survey with a terrestrial laser scanner and close-range photogrammetry is planned and executed to produce accurate high-resolution 3D digital models of the entire church and the ancient columns inside. This was the main objective of this study. The high-resolution 3D models allowed us to identify architectural complications occurring in historical buildings. The 3D reconstruction with the above metric techniques was indispensable for planning and carrying out the 3D ultrasonic tomography, which played an important role in detecting defects, voids, and flaws within the body of the studied columns by analyzing the propagation of the ultrasonic waves. The high-resolution 3D multiparametric models allowed us to obtain an extremely accurate picture of the conservation state of the studied columns in order to locate and characterize both shallow and internal defects in the building materials. This integrated procedure can aid in the control of the spatial and temporal variations in the materials’ properties and provides information on the process of deterioration in order to allow adequate restoration solutions to be developed and the structural health of the artefact to be monitored.
    Description: Published
    Description: 3098
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Keywords: close-range photogrammetry ; terrestrial laser scanner ; 3D digital models ; 3D ultrasonic tomography ; petrographic analyses ; carbonate materials ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-10-13
    Description: A field-integrated methodology using 3D ultrasonic tomography supported by close range photogrammetry (CRP) has been developed and evaluated as a tool to detect the presence and patterns of decay forms in a living adult holm oak (Quercus ilex L.) in an urban green area.
    Description: A field-integrated methodology using 3D ultrasonic tomography supported by close range photogrammetry (CRP) has been developed and evaluated as a tool to detect the presence and patterns of decay forms in a living adult holm oak (Quercus ilex L.) in an urban green area of the city of Cagliari, Sardinia, Italy. Close range photogrammetry was used to compute a high resolution 3D model of the studied tree, texturized with natural colors. Moreover, following the implemented workflow process it was possible to evaluate the deformation pattern of the studied tree over time. In a second step of our integrated approach, and in order to diagnose the state of health of the inner part of the studied tree in a non-invasive way, laboratory and in situ non-invasive ultrasonic techniques were applied. The results of the close range photogrammetry analysis supported the optimal design of the 3D ultrasonic tomography of the living adult holm oak. Ultrasonic tomography is one of the most powerful non-destructive testing techniques for the full-volume inspection of a structure. It produced physical information on the inner structure of the stem of the investigated tree. The results of the study show that the integrated application of close range photogrammetry and 3D ultrasonic tomography is a powerful tool for a highly accurate and objective evaluation of the external and internal decay of trees and for monitoring their conservation states. With the fully integrated approach, the diagnostic process aimed to prevent instability and the failure of trees can be greatly improved.
    Description: Published
    Description: 1199
    Description: 7A. Geofisica per il monitoraggio ambientale
    Description: JCR Journal
    Keywords: wood decay ; close range photogrammetry ; 3D ultrasonic tomography ; risk failure ; holm oak ; 05.04. Instrumentation and techniques of general interest ; Monitoring of trees
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...