ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 33RO20160505; 33RO20160524; Aragonite saturation state; Carbon dioxide, partial pressure; CTD/Rosette; CTD-RO; Date/Time of event; Elevation of event; Event label; Fluorescence; Latitude of event; Limacina helicina; Longitude of event; Oxygen; pH; Ronald H. Brown; Temperature, water; WCOA2016_100; WCOA2016_101; WCOA2016_102; WCOA2016_103; WCOA2016_104; WCOA2016_105; WCOA2016_106; WCOA2016_107; WCOA2016_108; WCOA2016_109; WCOA2016_110; WCOA2016_111; WCOA2016_112; WCOA2016_113; WCOA2016_114; WCOA2016_115; WCOA2016_116; WCOA2016_117; WCOA2016_118; WCOA2016_119; WCOA2016_120; WCOA2016_121; WCOA2016_122; WCOA2016_123; WCOA2016_124; WCOA2016_125; WCOA2016_126; WCOA2016_127; WCOA2016_128; WCOA2016_129; WCOA2016_130; WCOA2016_131; WCOA2016_132; WCOA2016_133; WCOA2016_134; WCOA2016_135; WCOA2016_42; WCOA2016_43; WCOA2016_44; WCOA2016_45; WCOA2016_46; WCOA2016_47; WCOA2016_48; WCOA2016_49; WCOA2016_50; WCOA2016_51; WCOA2016_52; WCOA2016_53; WCOA2016_54; WCOA2016_55; WCOA2016_56; WCOA2016_57; WCOA2016_58; WCOA2016_59; WCOA2016_60; WCOA2016_61; WCOA2016_62; WCOA2016_63; WCOA2016_64; WCOA2016_65; WCOA2016_66; WCOA2016_67; WCOA2016_68; WCOA2016_69; WCOA2016_70; WCOA2016_71; WCOA2016_72; WCOA2016_73; WCOA2016_74; WCOA2016_75; WCOA2016_76; WCOA2016_77; WCOA2016_78; WCOA2016_79; WCOA2016_80; WCOA2016_81; WCOA2016_82; WCOA2016_83; WCOA2016_84; WCOA2016_85; WCOA2016_86; WCOA2016_87; WCOA2016_88; WCOA2016_89; WCOA2016_90; WCOA2016_91; WCOA2016_92; WCOA2016_93; WCOA2016_94; WCOA2016_95; WCOA2016_96; WCOA2016_97; WCOA2016_98; WCOA2016_99; WCOA2016_Leg1; WCOA2016_Leg2  (1)
  • Euthecosomatous pteropods  (1)
Collection
Keywords
Publisher
Years
  • 1
    Publication Date: 2024-02-16
    Description: Understanding the interactive effects of multiple stressors on pelagic mollusks associated with global climate change is especially important in highly productive coastal ecosystems of the upwelling regime, such as the California Current System. Due to temporal overlap between an El Niño event and springtime intensification of the upwelling, pteropods of the California Current System were exposed to co-occurring increased temperature, low Ωar and pH, and deoxygenation. The variability in the natural gradients during NOAA's WCOA 2016 cruise provided a unique opportunity for synoptic study of chemical and biological interactions. We investigated the effects of in situ multiple drivers and their interactions across cellular, physiological, and population levels. Oxidative stress biomarkers were used to assess pteropods' cellular status and antioxidant defenses. OA stress induced significant activation of oxidative stress biomarkers, as indicated by increased levels of lipid peroxidation (LPX) but the antioxidative activity defense might be insufficient against cellular stress. Thermal stress in combination with low Ωar additively increases the level of LPX toxicity, while food availability (chorolophyll) can mediate the negative effect. On the physiological level, we found synergistic interaction between low Ωar and deoxygenation and thermal stress (Ωar: T, O2:T). Since this co-incides with the conditions in the natural settings, we can expect non-linear impact on physiological responses. On the population level, temperature was the main driver of abundance distribution, with low Ωar being a strong driver of secondary importance. The additive effects of thermal stress and low low Ωar on abundance suggest negative effect of El Niño at the population level. Our study clearly demonstrates Ωar and temperature are master variables in explaining biological responses, cautioning the use of a single parameter in the statistical analyses. Because pteropods contain high quantities of polyunsaturated fatty acids, oxidative stress causes LPX, resulting in the loss of lipid reserves and structural damage of cell membranes; corroborating pteropods' extreme sensitivity to OA. Accumulation of oxidative damage requires metabolic compensation, implying energetic trade-offs under combined thermal and OA stress. Oxidative stress biomarkers can be used as an early-warning signal of multiple stress on the cellular level, thereby providing important new insights into factors that set limits to species' tolerance of multiple drivers in the natural environment, especially when mechanistically linked though energetic implications.
    Keywords: 33RO20160505; 33RO20160524; Aragonite saturation state; Carbon dioxide, partial pressure; CTD/Rosette; CTD-RO; Date/Time of event; Elevation of event; Event label; Fluorescence; Latitude of event; Limacina helicina; Longitude of event; Oxygen; pH; Ronald H. Brown; Temperature, water; WCOA2016_100; WCOA2016_101; WCOA2016_102; WCOA2016_103; WCOA2016_104; WCOA2016_105; WCOA2016_106; WCOA2016_107; WCOA2016_108; WCOA2016_109; WCOA2016_110; WCOA2016_111; WCOA2016_112; WCOA2016_113; WCOA2016_114; WCOA2016_115; WCOA2016_116; WCOA2016_117; WCOA2016_118; WCOA2016_119; WCOA2016_120; WCOA2016_121; WCOA2016_122; WCOA2016_123; WCOA2016_124; WCOA2016_125; WCOA2016_126; WCOA2016_127; WCOA2016_128; WCOA2016_129; WCOA2016_130; WCOA2016_131; WCOA2016_132; WCOA2016_133; WCOA2016_134; WCOA2016_135; WCOA2016_42; WCOA2016_43; WCOA2016_44; WCOA2016_45; WCOA2016_46; WCOA2016_47; WCOA2016_48; WCOA2016_49; WCOA2016_50; WCOA2016_51; WCOA2016_52; WCOA2016_53; WCOA2016_54; WCOA2016_55; WCOA2016_56; WCOA2016_57; WCOA2016_58; WCOA2016_59; WCOA2016_60; WCOA2016_61; WCOA2016_62; WCOA2016_63; WCOA2016_64; WCOA2016_65; WCOA2016_66; WCOA2016_67; WCOA2016_68; WCOA2016_69; WCOA2016_70; WCOA2016_71; WCOA2016_72; WCOA2016_73; WCOA2016_74; WCOA2016_75; WCOA2016_76; WCOA2016_77; WCOA2016_78; WCOA2016_79; WCOA2016_80; WCOA2016_81; WCOA2016_82; WCOA2016_83; WCOA2016_84; WCOA2016_85; WCOA2016_86; WCOA2016_87; WCOA2016_88; WCOA2016_89; WCOA2016_90; WCOA2016_91; WCOA2016_92; WCOA2016_93; WCOA2016_94; WCOA2016_95; WCOA2016_96; WCOA2016_97; WCOA2016_98; WCOA2016_99; WCOA2016_Leg1; WCOA2016_Leg2
    Type: Dataset
    Format: text/tab-separated-values, 629 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Earth-Science Reviews 169 (2017): 132–145, doi:10.1016/j.earscirev.2017.04.005.
    Description: The impact of anthropogenic ocean acidification (OA) on marine ecosystems is a vital concern facing marine scientists and managers of ocean resources. Euthecosomatous pteropods (holoplanktonic gastropods) represent an excellent sentinel for indicating exposure to anthropogenic OA because of the sensitivity of their aragonite shells to the OA conditions less favorable for calcification. However, an integration of observations, experiments and modelling efforts is needed to make accurate predictions of how these organisms will respond to future changes to their environment. Our understanding of the underlying organismal biology and life history is far from complete and must be improved if we are to comprehend fully the responses of these organisms to the multitude of stressors in their environment beyond OA. This review considers the present state of research and understanding of euthecosomatous pteropod biology and ecology of these organisms and considers promising new laboratory methods, advances in instrumentation (such as molecular, trace elements, stable isotopes, palaeobiology alongside autonomous sampling platforms, CT scanning and high-quality video recording) and novel field-based approaches (i.e. studies of upwelling and CO2 vent regions) that may allow us to improve our predictive capacity of their vulnerability and/or resilience. In addition to playing a critical ecological and biogeochemical role, pteropods can offer a significant value as an early-indicator of anthropogenic OA. This role as a sentinel species should be developed further to consolidate their potential use within marine environmental management policy making.
    Description: M.I. Berning is financed by the German Research Foundation Priority Programme 1158 Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas (Project DFG-1158 SCHR 667/15-1).
    Keywords: Euthecosomatous pteropods ; Ocean acidification ; Calcifying organisms ; Marine ecosystem ; Carbonate chemistry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...