ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 230Th/U dating  (1)
  • Mound aggradation rate
Collection
Keywords
Publisher
Language
Years
  • 1
    Publication Date: 2024-04-02
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The radiocarbon analysis of uranium‐thorium‐dated cold‐water corals (CWCs) provides an excellent opportunity for qualitative reconstruction of past ocean circulation and water mass aging. While mid‐depth water mass aging has been studied in the Atlantic Ocean, the evolution of the thermocline is still largely unknown. Here we present a combined 〈sup〉14〈/sup〉C and 〈sup〉230〈/sup〉Th/U age record obtained from thermocline dwelling CWCs at various sites in the eastern Atlantic Ocean, with intermittently centennial resolution over the last 32 ka. Shallow dwelling CWCs off Angola, located in the South Atlantic, infer a link between the mid‐depth equatorial Atlantic and Southern Ocean. They confirm a 〈sup〉14〈/sup〉C drawdown during the Last Glacial Maximum (LGM) and advocate for a consistent Southern Hemisphere radiocarbon aging of upper thermocline waters, as well as strong depth gradients and high variability. Direct comparison with 〈sup〉14〈/sup〉C simulations carried out with an Ocean General Circulation Model yield good agreement for Angola. In contrast, the North Atlantic thermocline shows well‐ventilated water with strong variations near the position of today's Azores Front (AF), neither of which are captured by the model. During the Bølling‐Allerød, we confirm the important role of the AF in separating North and South Atlantic thermocline waters and provide further evidence of a 500 year long deep convection interruption within the Younger Dryas (YD). We conclude that the North and South Atlantic thermocline waters were separately acting carbon reservoirs during the LGM and subsequent deglaciation until the modern circulation was established during the YD.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉North Atlantic cold‐water corals trace well‐ventilated thermocline waters near major oceanic fronts since the Last Glacial Maximum〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Across the South Atlantic into the Southern Ocean, aged waters with large variability and connectivity are evident during the last glacial〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉The modern state of radiocarbon ventilation of the thermocline Atlantic is initiated during the Younger Dryas cold reversal〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: German Ministry of Education and Research
    Description: DFG‐ANR
    Description: PalMod project
    Description: https://doi.org/10.1594/PANGAEA.959508
    Keywords: 14C dating ; 230Th/U dating ; Alboran Sea ; Angola ; Atlantic ; Azores Front ; Batm age ; cold-water coral ; Mauritania ; ventilation ; radiocarbon dating ; U/Th
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Quaternary Science Reviews 185 (2018): 135-152, doi:10.1016/j.quascirev.2018.02.012.
    Description: The largest coherent cold-water coral (CWC) mound province in the Atlantic Ocean exists along the Mauritanian margin, where up to 100 m high mounds extend over a distance of ∼400 km, arranged in two slope-parallel chains in 400–550 m water depth. Additionally, CWCs are present in the numerous submarine canyons with isolated coral mounds being developed on some canyon flanks. Seventy-seven Uranium-series coral ages were assessed to elucidate the timing of CWC colonisation and coral mound development along the Mauritanian margin for the last ∼120,000 years. Our results show that CWCs were present on the mounds during the Last Interglacial, though in low numbers corresponding to coral mound aggradation rates of 16 cm kyr−1. Most prolific periods for CWC growth are identified for the last glacial and deglaciation, resulting in enhanced mound aggradation (〉1000 cm kyr−1), before mound formation stagnated along the entire margin with the onset of the Holocene. Until today, the Mauritanian mounds are in a dormant state with only scarce CWC growth. In the canyons, live CWCs are abundant since the Late Holocene at least. Thus, the canyons may serve as a refuge to CWCs potentially enabling the observed modest re-colonisation pulse on the mounds along the open slope. The timing and rate of the pre-Holocene coral mound aggradation, and the cessation of mound formation varied between the individual mounds, which was likely the consequence of vertical/lateral changes in water mass structure that placed the mounds near or out of oxygen-depleted waters, respectively.
    Description: This study received funding from and contributes to the DFG-projects "Palaeo-WACOM" (HE 3412/17-1) and "Cold-water coral mound development in a tropical upwelling cell – the great wall of(f) Mauritania" (Ti 706/3-1). A. Freiwald received funding from the Hessian initiative for the development of scientific and economic excellence (LOEWE) at the Biodiversity and Climate Research Centre (BiK-F), Frankfurt, Germany.
    Keywords: Lophelia pertusa ; Coral mound ; Submarine canyon ; Uranium-series dating ; Mound aggradation rate ; Last glacial ; Dissolved oxygen concentration ; South Atlantic Central Water ; Mauritanian margin
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...