ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © IEEE, 2010. This article is posted here by permission of IEEE for personal use, not for redistribution. The definitive version was published in IEEE Journal of Oceanic Engineering 35 (2010): 710-721, doi:10.1109/JOE.2010.2052875.
    Description: In this paper, a method for merging partial overlapping time series of ocean profiles into a single time series of profiles using empirical orthogonal function (EOF) decomposition with the objective analysis is presented. The method is used to handle internal waves passing two or more mooring locations from multiple directions, a situation where patterns of variability cannot be accounted for with a simple time lag. Data from one mooring are decomposed into linear combination of EOFs. Objective analysis using data from another mooring and these patterns is then used to build the necessary profile for merging the data, which is a linear combination of the EOFs. This method is applied to temperature data collected at a two vertical moorings in the 2006 New Jersey Shelf Shallow Water Experiment (SW06). Resulting profiles specify conditions for 35 days from sea surface to seafloor at a primary site and allow for reliable acoustic propagation modeling, mode decomposition, and beamforming.
    Description: This work was supported by the U.S. Office of Naval Research (ONR) under Grants N00014-04-1-0146 and N00014-05-1- 0482, theONRPostdoctoral FellowshipAward under Grant N00014-08-1-0204, and by E. Livingston and T. Pawluskiewicz. The work of P. F. J. Lermusiaux and P. J. Haley was supported by the ONR under Grants N00014-07-1-1061, N00014-07-1-0501, and N00014-08-1-1097 to the Massachusetts Institute of Technology.
    Keywords: 2006 Shallow Water Experiment (SW06) ; Empirical orthogonal functions (EOFs) ; Massachusetts Institute of Technology Multidisciplinary Simulation, Estimation, and Assimilation System (MIT-MSEAS) ocean modeling system ; Objective function fitting ; Oceanographic data merging
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...