ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ocean models  (3)
  • 165-1002; Age, 14C AMS; Age, 14C milieu/reservoir corrected; Age, dated; Age, dated material; Age, dated standard deviation; Calendar age; Calendar age, standard deviation; Cayman Rise, Caribbean Sea; Comment; COMPCORE; Composite Core; DEPTH, sediment/rock; Joides Resolution; Leg165; Ocean Drilling Program; ODP; Sample code/label; Δ14C; Δ14C, standard deviation  (1)
Collection
Keywords
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hughen, Konrad A; Lehman, Scott J; Southon, John R; Overpeck, Jonathan T; Marchal, Olivier; Herring, C; Turnbull, J (2004): 14C Activity and Global Carbon Cycle Changes over the Past 50,000 Years. Science, 303(5655), 202-207, https://doi.org/10.1126/science.1090300
    Publication Date: 2024-01-09
    Description: A series of 14C measurements in Ocean Drilling Program cores from the tropical Cariaco Basin, which have been correlated to the annual-layer counted chronology for the Greenland Ice Sheet Project 2 (GISP2) ice core, provides a high-resolution calibration of the radiocarbon time scale back to 50,000 years before the present. Independent radiometric dating of events correlated to GISP2 suggests that the calibration is accurate. Reconstructed 14C activities varied substantially during the last glacial period, including sharp peaks synchronous with the Laschamp and Mono Lake geomagnetic field intensity minimal and cosmogenic nuclide peaks in ice cores and marine sediments. Simulations with a geochemical box model suggest that much of the variability can be explained by geomagnetically modulated changes in 14C production rate together with plausible changes in deep-ocean ventilation and the global carbon cycle during glaciation.
    Keywords: 165-1002; Age, 14C AMS; Age, 14C milieu/reservoir corrected; Age, dated; Age, dated material; Age, dated standard deviation; Calendar age; Calendar age, standard deviation; Cayman Rise, Caribbean Sea; Comment; COMPCORE; Composite Core; DEPTH, sediment/rock; Joides Resolution; Leg165; Ocean Drilling Program; ODP; Sample code/label; Δ14C; Δ14C, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 3013 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 37 (2007): 394-407, doi:10.1175/jpo3018.1.
    Description: The ability of paleoceanographic tracers to constrain rates of transport is examined using an inverse method to combine idealized observations with a geostrophic model. Considered are the spatial distribution, accuracy, and types of tracers required to constrain changes in meridional transport within an idealized single-hemisphere basin. Measurements of density and radioactive tracers each act to constrain rates of transport. Conservative tracers, while not of themselves able to inform regarding rates of transport, improve constraints when coupled with density or radioactive observations. It is found that the tracer data would require an accuracy one order of magnitude better than is presently available for paleo-observations to conclusively rule out factor-of-2 changes in meridional transport, even when assumed available over the entire model domain. When data are available only at the margins and bottom of the model, radiocarbon is unable to constrain transport while density remains effective only when a reference velocity level is assumed. The difficulty in constraining the circulation in this idealized model indicates that placing firm bounds on past meridional transport rates will prove challenging.
    Description: The first author is supported by the NOAA Postdoctoral Program in Climate and Global Change and GG by the National Ocean Partnership Program (ECCO). Author OM acknowledges support from the National Science Foundation.
    Keywords: Tracers ; Transport ; Paleoclimatology ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 23 (2010): 4841–4855, doi:10.1175/2010JCLI3273.1.
    Description: A 1-Myr-long time-dependent solution of a zonally averaged ocean–atmosphere model subject to Milankovitch forcing is examined to gain insight into long-term changes in the planetary-scale meridional moisture flux in the atmosphere. The model components are a one-dimensional (latitudinal) atmospheric energy balance model with an active hydrological cycle and an ocean circulation model representing four basins (Atlantic, Indian, Pacific, and Southern Oceans). This study finds that the inclusion of an active hydrological cycle does not significantly modify the responses of annual-mean air and ocean temperatures to Milankovitch forcing found in previous integrations with a fixed hydrological cycle. Likewise, the meridional overturning circulation of the North Atlantic Ocean is not significantly affected by hydrological changes. Rather, it mainly responds to precessionally driven variations of ocean temperature in subsurface layers (between 70- and 500-m depth) of this basin. On the other hand, annual and zonal means of evaporation rate and meridional flux of moisture in the atmosphere respond notably to obliquity-driven changes in the meridional gradient of annual-mean insolation. Thus, when obliquity is decreased (increased), the meridional moisture flux in the atmosphere is intensified (weakened). This hydrological response is consistent with deuterium excess records from polar ice cores, which are characterized by dominant obliquity cycles.
    Description: A. A. thanks the Global Environmental and Climate Change Centre of McGill University for a Network Grant that made possible an enriching twoweek stay at WHOI during June 2007. O. M. acknowledges support from theU.S.National Science Foundation. Support from a Canadian NSERC Discovery Grant awarded to L.A.M. is gratefully acknowledged.
    Keywords: Forcing ; Moisture ; Fluxes ; Ocean models ; Coupled models ; Southern Ocean ; Pacific Ocean ; Atlantic Ocean ; Indian Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 31 (2018): 8059-8079, doi:10.1175/JCLI-D-17-0769.1.
    Description: We use the method of least squares with Lagrange multipliers to fit an ocean general circulation model to the Multiproxy Approach for the Reconstruction of the Glacial Ocean Surface (MARGO) estimate of near sea surface temperature (NSST) at the Last Glacial Maximum (LGM; circa 23–19 thousand years ago). Compared to a modern simulation, the resulting global, last-glacial ocean state estimate, which fits the MARGO data within uncertainties in a free-running coupled ocean–sea ice simulation, has global-mean NSSTs that are 2°C lower and greater sea ice extent in all seasons in both the Northern and Southern Hemispheres. Increased brine rejection by sea ice formation in the Southern Ocean contributes to a stronger abyssal stratification set principally by salinity, qualitatively consistent with pore fluid measurements. The upper cell of the glacial Atlantic overturning circulation is deeper and stronger. Dye release experiments show similar distributions of Southern Ocean source waters in the glacial and modern western Atlantic, suggesting that LGM NSST data do not require a major reorganization of abyssal water masses. Outstanding challenges in reconstructing LGM ocean conditions include reducing effects from model biases and finding computationally efficient ways to incorporate abyssal tracers in global circulation inversions. Progress will be aided by the development of coupled ocean–atmosphere–ice inverse models, by improving high-latitude model processes that connect the upper and abyssal oceans, and by the collection of additional paleoclimate observations.
    Description: DEA was supported by a NSF Graduate Research Fellowship and NSF Grant OCE-1060735. OM acknowledges support from the NSF. GF was supported by NASA Award 1553749 and Simons Foundation Award 549931.
    Keywords: Ocean ; Abyssal circulation ; Sea surface temperature ; Paleoclimate ; Inverse methods ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...