ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0789
    Keywords: Key words Isotope dilution ; 15N ; Lupin ; Symbiotic dependence ; Biological N2 fixation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The proportional contribution of atmospheric N2 to the N nutrition of lupin (P atm) was estimated in a field experiment following addition of NH4Cl of KNO3 to unconfined microplots (1.5 m2) at 2.5 g N m–2 (10 atom% 15N). The integrated 15N enrichment, or ’mean pool abundance‘, of nitrate extracted from 0- to 15-cm samples taken under the lupin crop on eight occasion between 28 and 190 days after sowing was used as the reference criterion to estimate P atm by the 15N-isotope dilution technique. Estimates of P atm were similar to those obtained using canola as a non-fixing reference plant, but were higher than estimates obtained using a yield-dependent model. Use of ’mean pool abundance‘ obviates the need for a non-fixing reference plant, and the frequent sampling and isotope-ratio analysis of the legume biomass required with the yield-dependent model is unnecessary. However, further work is needed to validate a sampling strategy commensurate with the growth of the legume roots.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 24 (1997), S. 239-242 
    ISSN: 1432-0789
    Keywords: Key words Biologically fixed N ; Cereals ; Intercropping ; Foliar labelling ; Grasses ; Legumes ; 15N ; N transfer ; Pastures
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract We examined the basis for estimating the transfer of legume N to companion cereals or grasses in intercropping or pature systems using the foliar 15N-labelling technique. Published data from three pot experiments were used to illustrate different methods for estimating N transfer. Yield-dependent and yield-independent methods based on measurement of the 15N enrichment of the whole legume biomass at harvest overestimate N transfer. Estimates of N transfer using a yield-independent method based on the 15N enrichment of the legume roots at harvest were inconsistent with estimates based on the isotopic composition of the whole plant. We propose a new mathematical concept for estimating the transfer of legume N based on measurement of the ‘mean pool abundance’ of the legume biomass during the period of N transfer.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0789
    Keywords: Isotope dilution ; 15N ; Lupin ; Symbiotic dependence ; Biological N2 fixation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The proportional contribution of atmospheric N2 to the N nutrition of lupin (P atm) was estimated in a field experiment following addition of NH4Cl of KNO3 to unconfined microplots (1.5 m2) at 2.5 g N m-2 (10 atom% 15N). The integrated 15N enrichment, or ‘mean pool abundance’, of nitrate extracted from 0- to 15-cm samples taken under the lupin crop on eight occasion between 28 and 190 days after sowing was used as the reference criterion to estimate P atm by the 15N-isotope dilution technique. Estimates of P atm were similar to those obtained using canola as a non-fixing reference plant, but were higher than estimates obtained using a yield-dependent model. Use of ‘mean pool abundance’ obviates the need for a non-fixing reference plant, and the frequent sampling and isotope-ratio analysis of the legume biomass required with the yield-dependent model is unnecessary. However, further work is needed to validate a sampling strategy commensurate with the growth of the legume roots.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5036
    Keywords: Hordeum vulgare ; microplots ; 15N ; N balance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract 15N labelled (NH4)2SO4 was applied to barley at 5 g N m−2 (50 kg N ha−1) in microplots at sowing to study the timing of the N losses and the contribution of soil and fertilizer N to the plant. Water treatments included rainfed and irrigation at 45–50 mm deficit beginning in the spring. Recovery of15N in the plant increased to a maximum of about 20% within 91 days after sowing (DAS 91) and then remained constant. Approximately 16% (0.8 g N m−2) of the fertilizer was in the stem and leaves at DAS 91 and this N was subsequently redistributed to the head. At maturity, approximately 75% of the15N assimilated by the tops was recovered in the grain. Soil N contributed 3.6 g N m−2 to the head; 2.2 g N m−2 was remobilized from the stem and leaves, and the balance, approximately 1.4 g N m−2, was taken up from the soil between DAS 69 to 91. Effects of irrigation treatments on N accumulation were not significant. Residual15N fertilizer in the soil decreased with time from sowing, and at maturity 40% of the applied N was recovered in the surface 0.15 m.15N movement to depth was limited and less than 5% of the fertilizer was recovered below 0.15 m. Irrigation had no effect on the15N recovery at depth. Total recovery of the15N varied between 60 and 67% and implies that 33–40% was lost from the soil-plant system. The total recovery in the soil and plant was not affected by time or irrigation in the interval DAS 39 to 134. Losses occurred before DAS 39 when crop uptake of N was small and soil mineral N content was high. There was an apparent loss of 1.9 g fertilizer N m−2 (i.e. 38% of that applied) between DAS 1 and 15. This loss occurred before crop emergence when rainfall provided conditions suitable for denitrification.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-5036
    Keywords: isotope dilution ; lupins ; 15N ; 35S ; symbiotic N2 fixation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Lupins, canola, ryegrass and wheat fertilized with Na2 35SO4 and either 15NH4Cl or K15NO3(N:S=10:1), were grown in the field in unconfined microplots, and the sources of N and S (fertilizer, soil, atmosphere, seed) in plant tops during crop development were estimated. Modelled estimates of the proportion of lupin N derived from the atmosphere, which were obtained independently of reference plants, were used to calculate the proportion of lupin N derived from the soil. Total uptake of N and S and uptake of labelled N and S increased during crop development. Total uptake of S by canola was higher than lupins, but labelled S uptake by lupins exceeded uptake by canola. The form of N applied had no effect on uptake of labelled and unlabelled forms of N or S. Ratios of labelled to unlabelled S and ratios of labelled to unlabelled N derived from soil sources decreased during growth, and were less for S than for N for each crop at each sampling time. Although ratios of labelled to unlabelled soil-derived N were similar between crops at 155, 176 and 190 days after sowing, ratios of labelled to unlabelled S for lupins were higher than for the reference crops and declined during this period. The ratios of labelled to unlabelled S in lupins and the reference plants therefore bore no relationship either to ratios of labelled to unlabelled soil-derived N in the plants, or to total S uptake by the plants. Therefore the hypothesis that equal ratios of labelled N to unlabelled soil-derived N in legumes (Rleg) and reference plants (Rref) would be indicated by equal ratios of labelled to unlabelled S was not supported by the data. The results therefore show that the accuracy of reference plant-derived values of Rleg cannot be evaluated by labelling with 35S.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...