ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1572-9680
    Keywords: 15N ; decomposition ; fertilizer use efficiency ; nutrient competition ; nutrient release
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract An experiment was conducted in an 11-year-old black walnut (Juglans nigra L.), red oak (Quercus rubra L.), maize (Zea mays L.) alley cropping system in the midwestern USA to examine the extent of tree-crop competition for nitrogen and decomposition dynamics of tree leaves and fine roots. A below-ground polyethylene root barrier (1.2 m deep) isolated black walnut roots from maize alleys in half the number of plots providing two treatments viz. ‘barrier’ and ‘no barrier’. The percentage of N derived from fertilizer (%NDF) and fertilizer use efficiency (%UFN) were determined using 15N enriched fertilizer. Further, maize grain and stover biomass, tree leaf biomass, tissue N concentration, and N content were quantified in both treatments. The ‘barrier’ treatment resulted in a significantly greater grain (67.3% more) and stover (37.2% more) biomass than the ‘no barrier’ treatment. The %NDF in both grain and stover was higher in the ‘no barrier’ treatment as a result of competition from tree roots for water and mineralized N in soil. Maize plants growing in the ‘no barrier’ treatment had a lower %UFN than those in the ‘barrier’ treatment due to their smaller size and inability to take up fertilizer. Analysis of tree leaf and fine root decomposition patterns revealed faster release of N (39% over 15 days for black walnut and 17.7% for red oak) and P (30% over 15 days for both species) from roots compared to the leaves of both species. Following an early release of P (11.3% over 45 days), red oak leaves exhibited significant immobilization for the rest of the incubation period. The data indicate that competition for N from fertilizer is minimal since nutrient acquisition is not simultaneous among black walnut and maize. However, competition for mineralized N in soil can exist between black walnut and maize depending on water availability and competition. Tree leaves and fine roots can enhance soil nutrient pools through the addition of soil carbon and nutrients. Tree fine roots seem to play a more significant role in nutrient cycling within the alley cropping system because of their faster release of both N and P as compared to leaves. Selection of tree species and their phenology will impact the magnitude and rate of nutrient cycling.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...