ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 108-663; AGE; Calcium carbonate; COMPCORE; Composite Core; Density, dry bulk; Depth, composite; DSDP/ODP/IODP sample designation; Globigerinoides ruber white, δ18O; Intercore correlation; Joides Resolution; Leg108; Melosira; Ocean Drilling Program; ODP; Opal, biogenic silica; Phytoliths; Sample code/label; Sedimentation rate; South Atlantic Ocean; Terrigenous  (1)
  • African margin
Collection
Keywords
Years
  • 1
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 31 (2016): 185–202, doi:10.1002/2015PA002862.
    Description: The intertropical convergence zone and the African monsoon system are highly sensitive to climate forcing at orbital and millennial timescales. Both systems influence the strength and direction of the trade winds along northwest Africa and thus directly impact coastal upwelling. Sediment cores from the northwest African margin record upwelling-related changes in biological productivity connected to changes in regional and hemispheric climate. We present records of 230Th-normalized biogenic opal and Corg fluxes using a meridional transect of four cores from 19°N–31°N along the northwest African margin to examine changes in paleoproductivity since the last glacial maximum. We find large changes in biogenic fluxes synchronous with changes in eolian fluxes calculated using end-member modeling, suggesting that paleoproductivity and dust fluxes were strongly coupled, likely linked by changes in wind strength. Opal and Corg fluxes increase at all sites during Heinrich Stadial 1 and the Younger Dryas, consistent with an overall intensification of the trade winds, and changes in the meridional flux gradient indicate a southward wind shift at these times. Biogenic fluxes were lowest, and the meridional flux gradients were weakest during the African Humid Period when the monsoon was invigorated due to precessional changes, with greater rainfall and weaker trade winds over northwest Africa. These results expand the spatial coverage of previous paleoproxy studies showing similar changes, and they provide support for modeling studies showing changes in wind strength and direction consistent with increased upwelling during abrupt coolings and decreased upwelling during the African Humid Period.
    Description: NSF Grant Numbers: OCE-1103262, OCE-1030784, OCE-0402348; Center for Climate and Life
    Description: 2016-07-23
    Keywords: Opal flux ; African margin ; African Humid Period ; Trade winds ; Abrupt change ; Deglaciation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: deMenocal, Peter B; Ruddiman, William F; Pokras, Edward M (1993): Influences of high- and low-latitude processes on African terrestrial climate: Pleistocene eolian records from equatorial Atlantic Ocean Drilling Program Site 663. Paleoceanography, 8(2), 209-242, https://doi.org/10.1029/93PA02688
    Publication Date: 2024-01-09
    Description: High- and low-latitude forcing of terrestrial African paleoclimate variability is demonstrated using 900 ka eolian and biogenic component records from Ocean Drilling Program site 663 in the eastern equatorial Atlantic. Terrigenous (eolian dust) and phytolith (savannah grass cuticle) accumulation rate records vary predominantly at 100 and 41 kyr periodicities and spectral phase estimates implicate high-latitude forcing. The abundance of freshwater diatoms (Melosira) transported from dry African lake beds varies coherently at 23-19 kyr orbital periodicities and at a phasing which implicates low-latitude precessional monsoon forcing. Modeling studies demonstrate that African climate is sensitive to both high- and low-latitude boundary conditions. African monsoon intensity is modulated by direct insolation variations due to orbital precession, whereas remote high-latitude forcing can be related to cool North Atlantic sea surface temperatures (SSTs) which promote African aridity and enhance dust-transporting wind speeds. The site 663 terrigenous and phytolith records covary with North Atlantic SST variability at 41 °N (site 607). We suggest that Pleistocene African climate has responded to both high-latitude North Atlantic SST variability as well as low-latitude precessional monsoon forcing; the high-latitude influence dominates the sedimentary record. Prior to circa 2.4 Ma, terrigenous variations occurred primarily at precessional periodicities (23-19 kyr), indicating that African climate was largely controlled by low-latitude insolation variations prior to the onset of high-amplitude glacial-interglacial climate change.
    Keywords: 108-663; AGE; Calcium carbonate; COMPCORE; Composite Core; Density, dry bulk; Depth, composite; DSDP/ODP/IODP sample designation; Globigerinoides ruber white, δ18O; Intercore correlation; Joides Resolution; Leg108; Melosira; Ocean Drilling Program; ODP; Opal, biogenic silica; Phytoliths; Sample code/label; Sedimentation rate; South Atlantic Ocean; Terrigenous
    Type: Dataset
    Format: text/tab-separated-values, 3372 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...