ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-03
    Description: When coal seams are formed by compaction of plants, gases including methane are generated and accumulated into the coal cleats or adsorbed into the coal micropores. Such coalbed methane is normally recovered by means of reservoir-pressure depletion, i.e. by pumping out water and degassing the reservoir. A more attractive process with higher yields is the so-called Enhanced Coal Bed Methane recovery (ECBM), whereby carbon dioxide is pumped into the coal seam to displace methane thanks to higher CO2 adsorptivity. Injecting CO2 in unminable coal seams leads not only to methane recovery but also to CO2 sequestration. The factors still limiting the implementation of ECBM recovery are economical, i.e. lack of penalties for CO2 emissions, as well as technological and scientific, i.e. limited understanding of fundamental issues related to ECBM. Therefore, the goal of this study is to combine experimental measurements and modelling to characterize pure and multicomponent competitive adsorption of CO2 and CH4 on coal and study the coalbed dynamics using breakthrough experiments, including the effect of the injection of CO2 on matrix swelling and permeability. Since December 2004, a feasibility study throughout the Sulcis Coal Province in Sardinia [Quattrocchi, 2004] is in progress and one of its objectives is to correlate the results of the mentioned experiments with the compositional patterns of the coal, considering its role in the CBM-ECBM exploitation.
    Description: Published
    Description: 355-364
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: JCR Journal
    Description: reserved
    Keywords: Enhanced Coal Beds Methane ; Sulcis Coal CO2 storage ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-03
    Description: An ECBM (Enhanced Coal Bed Methane) feasibility study started for the Sulcis Coal Province (SW Sardinia, Italy) in December 2004: geochemical, structural-geology, stratigraphic and reservoir engineering considerations are discussed. The first newly gathered experimental data are discussed, including: fluid geochemistry (major and minor elements, dissolved gases, C and He isotopic ratios) of the reservoir, coal composition and experimental data on CO2/CH4 adsorption on coal. A MapInfo GIS structure was built up including stratigraphical, geo-structural, hydrogeochemical, coal-compositional and environmental impact information as well as the CO2 sources location and typology. Even if these data could be preliminary with respect to the coal characteritics effectively located at the future injection depth, they highlighted both the challenging positive and negative aspects of the Sulcis Coal Province versus the exploitation of the ECBM technique. The most important objective of this phase I of the project is the selection of the best Sulcis ECBM test-pilot site, which will be followed (Phase II) by the choice of a scaled up site and possibly by a future network (Phase III). These phases are foreseen to be accompanied by the selection of progressively added CO2 industrial sources, to be used within the project economic spreadsheet model, actually in evolution. CO2 geological storage and CH4 production potentials in Sulcis have been grossly evaluated as a whole, in the frame of the Sardinia region CO2 sources, including the coal-fired power plants, both existent and foreseen (hundreds of millions of tonns of CO2 are possible to be stored underground in the next decades). The reservoir estimates, both for the CO2 injection and for the CH4 production are clearly involving to start the test-site phase exploitation, in the frame of an auspicabile international operative project.
    Description: Published
    Description: Trondheim, Norway
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: open
    Keywords: Absorption of CO2 and CH4 on coal ; ECBM Sulcis coal ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...