ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: Modeling postseismic deformation is an increasingly valuable tool in earthquake seismology. In particular, the Finite Element (FE) numerical method allows accurate modeling of complex faulting geometry, inhomogeneous materials and realistic viscous flow, appearing an excellent tool to investigate a lot of specific phenomena related with earthquakes.
    Description: Unpublished
    Description: San Francisco, CA, USA
    Description: open
    Keywords: faulting sources ; coseismic deformation ; finite element method ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Format: 7635002 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Finite Element methods (FEMs) are a powerful numerical simulation tool for modeling seismic events as they allow to solve three-dimensional complex models. We used a 3D Finite Element approach to evaluate the co-seismic displacement eld produced by the devastating 2004 Sumatra Andaman earthquake, which caused permanent deformations recorded by continuously operating GPS networks in a region of unprecedented extent. Previous analysis of the static displacement fi eld focused on the heterogeneous distribution of moment release on the fault plane; our intention here is to investigate how much the presence of crustal heterogeneities trades off seismic source details. To this aim, we adopted a quite simple source model in modeling the event. The key feature of our analysis is the generation of a complex three dimensional spherical domain. More-over, we also made an accurate analysis concerning boundary conditions, which are crucial for FE simulations.
    Description: Submitted
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: open
    Keywords: Finite element method ; 3D modeling ; boundary conditions ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: manuscript
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...